Suppr超能文献

一些蛋白质相互作用数据并不呈现幂律统计特征。

Some protein interaction data do not exhibit power law statistics.

作者信息

Tanaka Reiko, Yi Tau-Mu, Doyle John

机构信息

Bio-Mimetic Control Research Center, RIKEN, Nagoya 223-8522, Japan.

出版信息

FEBS Lett. 2005 Sep 26;579(23):5140-4. doi: 10.1016/j.febslet.2005.08.024.

Abstract

It has been claimed that protein-protein interaction (PPI) networks are scale-free, and that identifying high-degree "hub" proteins reveals important features of PPI networks. In this paper, we evaluate the claims that PPI node degree sequences follow a power law, a necessary condition for networks to be scale-free. We provide two PPI network examples which clearly do not have power laws when analyzed correctly, and thus at least these PPI networks are not scale-free. We also show that these PPI networks do appear to have power laws according to methods that have become standard in the existing literature. We explain the source of this error using numerically generated data from analytic formulas, where there are no sampling or noise ambiguities.

摘要

有人声称蛋白质-蛋白质相互作用(PPI)网络是无标度的,并且识别高度“枢纽”蛋白可以揭示PPI网络的重要特征。在本文中,我们评估了PPI节点度序列遵循幂律这一说法,而幂律是网络成为无标度的必要条件。我们提供了两个PPI网络示例,当正确分析时,它们显然不具有幂律,因此至少这些PPI网络不是无标度的。我们还表明,根据现有文献中已成为标准的方法,这些PPI网络似乎确实具有幂律。我们使用来自解析公式的数值生成数据来解释这种误差的来源,在这些数据中不存在采样或噪声模糊性问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验