Suppr超能文献

重新审视生物网络中的参数估计:对称性的影响。

Revisiting Parameter Estimation in Biological Networks: Influence of Symmetries.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):836-849. doi: 10.1109/TCBB.2020.2980260. Epub 2021 Jun 3.

Abstract

Graph models often give us a deeper understanding of real-world networks. In the case of biological networks they help in predicting the evolution and history of biomolecule interactions, provided we map properly real networks into the corresponding graph models. In this paper, we show that for biological graph models many of the existing parameter estimation techniques overlook the critical property of graph symmetry (also known formally as graph automorphisms), thus the estimated parameters give statistically insignificant results concerning the observed network. To demonstrate it and to develop accurate estimation procedures, we focus on the biologically inspired duplication-divergence model, and the up-to-date data of protein-protein interactions of seven species including human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a parameter estimation technique that provides the right order of symmetries and uses phylogenetically old proteins as the choice of seed graph nodes. We also find that our results are consistent with the ones obtained from maximum likelihood estimation (MLE). However, the MLE approach is significantly slower than our methods in practice.

摘要

图模型通常使我们能够更深入地了解现实世界中的网络。在生物网络的情况下,它们有助于预测生物分子相互作用的演化和历史,前提是我们正确地将真实网络映射到相应的图模型中。在本文中,我们表明,对于生物图模型,许多现有的参数估计技术忽略了图对称性(正式称为图自同构)的关键性质,因此估计的参数在关于观察到的网络的统计上没有意义。为了证明这一点并开发准确的估计程序,我们专注于受生物学启发的复制-分歧模型,以及包括人类和酵母在内的七个物种的蛋白质-蛋白质相互作用的最新数据。使用一些突出的图统计量的精确递归关系,我们设计了一种参数估计技术,该技术提供了正确的对称顺序,并使用系统发生上古老的蛋白质作为种子图节点的选择。我们还发现,我们的结果与从最大似然估计(MLE)获得的结果一致。然而,在实践中,MLE 方法比我们的方法慢得多。

相似文献

1
Revisiting Parameter Estimation in Biological Networks: Influence of Symmetries.重新审视生物网络中的参数估计:对称性的影响。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):836-849. doi: 10.1109/TCBB.2020.2980260. Epub 2021 Jun 3.
7
Network archaeology: uncovering ancient networks from present-day interactions.网络考古学:从当今的互动中揭示古代网络。
PLoS Comput Biol. 2011 Apr;7(4):e1001119. doi: 10.1371/journal.pcbi.1001119. Epub 2011 Apr 14.
9
Protein complex prediction with RNSC.使用RNSC进行蛋白质复合物预测。
Methods Mol Biol. 2012;804:297-312. doi: 10.1007/978-1-61779-361-5_16.
10
Graph spectral analysis of protein interaction network evolution.蛋白质相互作用网络演化的图谱分析。
J R Soc Interface. 2012 Oct 7;9(75):2653-66. doi: 10.1098/rsif.2012.0220. Epub 2012 May 2.

本文引用的文献

7
How scale-free are biological networks.生物网络的无标度程度如何。
J Comput Biol. 2006 Apr;13(3):810-8. doi: 10.1089/cmb.2006.13.810.
8
A likelihood approach to analysis of network data.一种用于网络数据分析的似然方法。
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7566-70. doi: 10.1073/pnas.0600061103. Epub 2006 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验