Suppr超能文献

一种用于从极稀疏数据中稳健估计组织与血浆比率的随机抽样方法。

A random sampling approach for robust estimation of tissue-to-plasma ratio from extremely sparse data.

作者信息

Chu Hui-May, Ette Ene I

机构信息

Department of Clinical Pharmacology, Vertex Pharmaceuticals Inc, 130 Waverly Street, Cambridge, MA 02139-4242, USA.

出版信息

AAPS J. 2005 Sep 2;7(1):E249-58. doi: 10.1208/aapsj070124.

Abstract

his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.

摘要

本研究旨在开发一种新的非参数方法,用于从极其稀疏采样的配对数据(即每个受试者的血浆和组织各一个样本)中估计稳健的组织与血浆比率。使用独立时间点方法、朴素数据平均方法计算的曲线下面积(AUC)值以及基于采样的方法(例如基于伪轮廓的自助法[PpbB]和随机采样方法[我们提出的方法])从配对/非配对实验数据中估计组织与血浆比率。随机采样方法涉及使用两阶段算法。研究了采样/重采样方法的收敛性,以及不同方法产生的估计值的稳健性。为了评估后者,通过将异常值引入真实数据集来生成新的数据集。将一到两个浓度值从其原始值提高10%至40%以产生异常值。使用独立时间点方法计算的组织与血浆比率在各时间点之间在0到50之间变化。从朴素数据平均方法获得的AUC值得到的比率与任何不确定性或变异性度量均无关。不考虑配对来计算比率会产生较差的估计值。随机采样和基于伪轮廓的自助法产生了具有不确定性和变异性的组织与血浆比率。然而,随机采样方法由于其算法的两阶段性质,产生了更稳健的估计值且所需的重复次数更少。因此,提出了一种两阶段随机采样方法,用于从极其稀疏采样的数据中稳健估计组织与血浆比率。

相似文献

2
Can bioavailability of low-variance drugs be estimated with an unpaired, sparse sampling design?
Clin Pharmacol Ther. 1998 Apr;63(4):437-43. doi: 10.1016/S0009-9236(98)90039-X.
3
The application of sample pooling methods for determining AUC, AUMC and mean residence times in pharmacokinetic studies.
Fundam Clin Pharmacol. 2005 Jun;19(3):347-54. doi: 10.1111/j.1472-8206.2005.00329.x.
6
8
Population pharmacokinetic measures, their estimation and selection of sampling times.
J Biopharm Stat. 2007;17(5):919-41. doi: 10.1080/10543400701514080.
10
Bootstrap methods for statistical inference from stereological estimates of volume fraction.
J Microsc. 2005 May;218(Pt 2):160-70. doi: 10.1111/j.1365-2818.2005.01470.x.

引用本文的文献

1
Expression of CD134 and CXCR4 mRNA in term placentas from FIV-infected and control cats.
Vet Immunol Immunopathol. 2008 May 15;123(1-2):90-6. doi: 10.1016/j.vetimm.2008.01.014. Epub 2008 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验