Ximenes Valdecir F, Silva Sueli de O, Rodrigues Maria R, Catalani Luiz H, Maghzal Ghassan J, Kettle Anthony J, Campa Ana
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
J Biol Chem. 2005 Nov 18;280(46):38160-9. doi: 10.1074/jbc.M506384200. Epub 2005 Sep 7.
Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics.
髓过氧化物酶利用过氧化氢将多种底物氧化为次卤酸或活性自由基。在此我们表明,中性粒细胞在髓过氧化物酶催化的反应中将褪黑素氧化为N(1)-乙酰基-N(2)-甲酰基-5-甲氧基犬尿胺(AFMK)。AFMK的产生高度依赖超氧化物而非过氧化氢。它不需要次氯酸、单线态氧或羟基自由基。纯化的髓过氧化物酶和一个超氧化物生成系统将褪黑素氧化为AFMK和一种二聚体。该二聚体将由褪黑素自由基的偶联产生。褪黑素的氧化受到过氧化氢酶或超氧化物歧化酶的部分抑制。AFMK的形成几乎完全被超氧化物歧化酶消除,但仅受到过氧化氢酶的微弱抑制。相反,褪黑素二聚体的产生因超氧化物歧化酶而增强,并被过氧化氢酶阻断。我们提出髓过氧化物酶利用超氧化物通过两条不同途径氧化褪黑素。一条途径涉及经典的过氧化机制,其中过氧化氢用于将褪黑素氧化为自由基。超氧化物添加到这些自由基上形成不稳定的过氧化物,该过氧化物分解为AFMK。在另一条途径中,髓过氧化物酶利用超氧化物将双氧插入褪黑素中以形成AFMK。这种新活性扩展了髓过氧化物酶可催化的氧化反应类型。它应该与中性粒细胞利用超氧化物杀死细菌的方式以及它们代谢外源性物质的方式相关。