Suppr超能文献

mTOR regulates cell survival after etoposide treatment in primary AML cells.

作者信息

Xu Qing, Thompson James E, Carroll Martin

机构信息

Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Blood. 2005 Dec 15;106(13):4261-8. doi: 10.1182/blood-2004-11-4468. Epub 2005 Sep 8.

Abstract

Acute myeloid leukemia cells have constitutive activation of phosphatidylinositol 3(PI3) kinase and require PI3 kinase activation for survival; however, the function of the PI3 kinase pathway in the survival of leukemic cells is poorly defined. We have studied the role of one PI3 kinase substrate, mTOR (mammalian target of rapamycin), in primary leukemic cells. In initial experiments, we have defined a novel growth medium that improves survival of acute myeloid leukemia (AML) blasts in long-term suspension culture and the survival of leukemic stem cells in short-term cultures. Inhibition of mTOR using rapamycin leads to a modest decrease in cell survival after 2 days of incubation with more significant decrease in survival after 7 days of culture. However, when rapamycin is added to etoposide in 2-day cultures, there is a dramatic increase in the cytotoxicity of etoposide against AML blasts. Furthermore, etoposide consistently decreased the engraftment of AML cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) animals, and this effect was enhanced by coincubation with rapamycin, demonstrating that mTOR regulates survival of AML stem cells after etoposide treatment. These results suggest that rapamycin in combination with etoposide-based chemotherapy may be efficacious in the treatment of AML.

摘要

相似文献

1
mTOR regulates cell survival after etoposide treatment in primary AML cells.
Blood. 2005 Dec 15;106(13):4261-8. doi: 10.1182/blood-2004-11-4468. Epub 2005 Sep 8.
2
Antileukemic activity of rapamycin in acute myeloid leukemia.
Blood. 2005 Mar 15;105(6):2527-34. doi: 10.1182/blood-2004-06-2494. Epub 2004 Nov 18.
3
Survival of acute myeloid leukemia cells requires PI3 kinase activation.
Blood. 2003 Aug 1;102(3):972-80. doi: 10.1182/blood-2002-11-3429. Epub 2003 Apr 17.
6
mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival.
Biochem Biophys Res Commun. 2017 Feb 5;483(2):897-903. doi: 10.1016/j.bbrc.2017.01.031. Epub 2017 Jan 9.
8
Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
J Hematol Oncol. 2016 Apr 12;9:36. doi: 10.1186/s13045-016-0264-3.
9
Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia.
Expert Opin Ther Targets. 2017 Jul;21(7):705-714. doi: 10.1080/14728222.2017.1333600. Epub 2017 Jun 9.
10
Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent.
Biochem Biophys Res Commun. 2016 Feb 5;470(2):324-330. doi: 10.1016/j.bbrc.2016.01.054. Epub 2016 Jan 11.

引用本文的文献

1
Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy.
Int J Hematol. 2024 May;119(5):541-551. doi: 10.1007/s12185-024-03732-0. Epub 2024 Mar 26.
3
Activation of orphan receptor GPR132 induces cell differentiation in acute myeloid leukemia.
Cell Death Dis. 2022 Nov 27;13(11):1004. doi: 10.1038/s41419-022-05434-z.
4
Targeting metabolism: A potential strategy for hematological cancer therapy.
World J Clin Cases. 2022 Apr 6;10(10):2990-3004. doi: 10.12998/wjcc.v10.i10.2990.
5
Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells.
Front Oncol. 2022 Feb 10;12:807266. doi: 10.3389/fonc.2022.807266. eCollection 2022.
6
Tanshinone IIa Induces Autophagy and Apoptosis via PI3K/Akt/mTOR Axis in Acute Promyelocytic Leukemia NB4 Cells.
Evid Based Complement Alternat Med. 2021 Oct 15;2021:3372403. doi: 10.1155/2021/3372403. eCollection 2021.
8
Mitochondrial metabolism as a target for acute myeloid leukemia treatment.
Cancer Metab. 2021 Apr 21;9(1):17. doi: 10.1186/s40170-021-00253-w.
9
Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice.
Front Pharmacol. 2021 Jan 8;11:597942. doi: 10.3389/fphar.2020.597942. eCollection 2020.
10
The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside.
Front Oncol. 2021 Jan 8;10:611690. doi: 10.3389/fonc.2020.611690. eCollection 2020.

本文引用的文献

2
mTOR, translational control and human disease.
Semin Cell Dev Biol. 2005 Feb;16(1):29-37. doi: 10.1016/j.semcdb.2004.11.005. Epub 2004 Dec 31.
3
Antileukemic activity of rapamycin in acute myeloid leukemia.
Blood. 2005 Mar 15;105(6):2527-34. doi: 10.1182/blood-2004-06-2494. Epub 2004 Nov 18.
4
Putting the rap on Akt.
J Clin Oncol. 2004 Oct 15;22(20):4217-26. doi: 10.1200/JCO.2004.01.103.
6
Upstream and downstream of mTOR.
Genes Dev. 2004 Aug 15;18(16):1926-45. doi: 10.1101/gad.1212704.
9
Adult acute myeloid leukaemia.
Crit Rev Oncol Hematol. 2004 Jun;50(3):197-222. doi: 10.1016/j.critrevonc.2003.11.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验