Wagschal Kurt, Franqui-Espiet Diana, Lee Charles C, Robertson George H, Wong Dominic W S
Agricultural Research Service, U.S. Dept. of Agriculture, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
Appl Environ Microbiol. 2005 Sep;71(9):5318-23. doi: 10.1128/AEM.71.9.5318-5323.2005.
We describe here a new enzyme-coupled assay for the quantitation of d-xylose using readily available enzymes that allows kinetic evaluation of hemicellulolytic enzymes using natural xylooligosaccharide substrates. Hydrogen peroxide is generated as an intermediary analyte, which allows flexibility in the choice of the chromophore or fluorophore used as the final reporter. Thus, we present d-xylose quantitation results for solution-phase assays performed with both the fluorescent reporter resorufin, generated from N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), whose corresponding radical cation has an absorbance maximum at approximately 400 nm. We also describe a useful solid-phase variation of the assay performed with the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride, which produces an insoluble brown precipitate. In addition, kinetic parameters for hydrolysis of the natural substrates xylobiose and xylotriose were obtained using this assay for a glycosyl hydrolase family 39 beta-xylosidase from Thermoanaerobacterium sp. strain JW/SL YS485 (Swiss-Prot accession no. O30360). At higher xylobiose substrate concentrations the enzyme showed an increase in the rate indicative of transglycosylation, while for xylotriose marked substrate inhibition was observed. At lower xylobiose concentrations k(cat) was 2.7 +/- 0.4 s(-1), K(m) was 3.3 +/- 0.7 mM, and k(cat)/K(m) was 0.82 +/- 0.21 mM(-1) . s(-1). Nonlinear curve fitting to a substrate inhibition model showed that for xylotriose K(i) was 1.7 +/- 0.1 mM, k(cat) was 2.0 +/- 0.1 s(-1), K(m) was 0.144 +/- 0.011 mM, and k(cat)/K(m) was 14 +/- 1.3 mM(-1) . s(-1).
我们在此描述一种新的酶联测定法,用于定量测定D-木糖,该方法使用现成的酶,能够利用天然木寡糖底物对半纤维素酶进行动力学评估。过氧化氢作为中间分析物生成,这使得在选择用作最终报告物的发色团或荧光团方面具有灵活性。因此,我们展示了使用荧光报告物试卤灵(由N-乙酰-3,7-二羟基吩恶嗪(Amplex Red)生成)和2,2'-叠氮基双(3-乙基苯并噻唑啉-6-磺酸盐)(ABTS)进行的溶液相测定的D-木糖定量结果,其相应的自由基阳离子在约400nm处有最大吸光度。我们还描述了一种有用的固相变体测定法,该方法使用过氧化物酶底物四盐酸3,3'-二氨基联苯胺,会产生不溶性棕色沉淀。此外,使用该测定法获得了来自嗜热厌氧菌菌株JW/SL YS485(瑞士蛋白质数据库登录号O30360)的糖基水解酶家族39β-木糖苷酶对天然底物木二糖和木三糖水解的动力学参数。在较高的木二糖底物浓度下,该酶的反应速率增加,表明存在转糖基化现象,而对于木三糖,则观察到明显的底物抑制作用。在较低的木二糖浓度下,k(cat)为2.7±0.4 s(-1),K(m)为3.3±0.7 mM,k(cat)/K(m)为0.82±0.21 mM(-1)·s(-1)。对底物抑制模型进行非线性曲线拟合表明,对于木三糖,K(i)为1.7±0.1 mM,k(cat)为2.0±0.1 s(-1),K(m)为0.144±0.011 mM,k(cat)/K(m)为14±1.3 mM(-1)·s(-1)。