Van den Schoor F, Verplaetsen F
K.U. Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, B-3000 Leuven, Belgium.
J Hazard Mater. 2006 Jan 16;128(1):1-9. doi: 10.1016/j.jhazmat.2005.06.043. Epub 2005 Sep 8.
The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.
在初始压力高达30巴、温度高达250摄氏度的条件下,通过实验测定了乙烷 - 空气、丙烷 - 空气、正丁烷 - 空气、乙烯 - 空气和丙烯 - 空气混合物的爆炸上限(UEL)。实验在一个内径为200毫米的封闭球形容器中进行。混合物通过位于容器中心的螺旋钨丝通电熔断来点燃。如果混合物点燃后压力升高至少为初始压力的1%,则认为发生了火焰传播。在所研究的压力 - 温度范围内,除了自燃范围附近外,发现爆炸上限与温度呈线性关系,与压力呈双线性关系。低级烷烃爆炸上限数据的比较表明,以当量比(实际燃料/空气比除以化学计量燃料/空气比)表示的爆炸上限在烷烃同系物中随碳原子数的增加而增加。