Suppr超能文献

具有不同范数的核支持向量机的几何性质。

Geometrical properties of nu support vector machines with different norms.

作者信息

Ikeda Kazushi, Murata Noboru

机构信息

Graduate School of Informatics, Kyoto University, Sakyo, Kyoto 606-8501 Japan.

出版信息

Neural Comput. 2005 Nov;17(11):2508-29. doi: 10.1162/0899766054796897.

Abstract

By employing the L1 or Linfinity norms in maximizing margins, support vector machines (SVMs) result in a linear programming problem that requires a lower computational load compared to SVMs with the L2 norm. However, how the change of norm affects the generalization ability of SVMs has not been clarified so far except for numerical experiments. In this letter, the geometrical meaning of SVMs with the Lp norm is investigated, and the SVM solutions are shown to have rather little dependency on p.

摘要

通过在最大化间隔时采用L1或L无穷范数,支持向量机(SVM)会产生一个线性规划问题,与采用L2范数的支持向量机相比,该问题所需的计算量更低。然而,除了数值实验外,范数的变化如何影响支持向量机的泛化能力目前尚未明确。在这封信中,研究了采用Lp范数的支持向量机的几何意义,结果表明支持向量机的解对p的依赖性相当小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验