Suppr超能文献

关于 1-范数支持向量机的稀疏性。

On the sparseness of 1-norm support vector machines.

机构信息

Institute of Intelligent Information Processing, Xidian University, Xi'an 710071, China.

出版信息

Neural Netw. 2010 Apr;23(3):373-85. doi: 10.1016/j.neunet.2009.11.012. Epub 2009 Dec 3.

Abstract

There is some empirical evidence available showing that 1-norm Support Vector Machines (1-norm SVMs) have good sparseness; however, both how good sparseness 1-norm SVMs can reach and whether they have a sparser representation than that of standard SVMs are not clear. In this paper we take into account the sparseness of 1-norm SVMs. Two upper bounds on the number of nonzero coefficients in the decision function of 1-norm SVMs are presented. First, the number of nonzero coefficients in 1-norm SVMs is at most equal to the number of only the exact support vectors lying on the +1 and -1 discriminating surfaces, while that in standard SVMs is equal to the number of support vectors, which implies that 1-norm SVMs have better sparseness than that of standard SVMs. Second, the number of nonzero coefficients is at most equal to the rank of the sample matrix. A brief review of the geometry of linear programming and the primal steepest edge pricing simplex method are given, which allows us to provide the proof of the two upper bounds and evaluate their tightness by experiments. Experimental results on toy data sets and the UCI data sets illustrate our analysis.

摘要

有一些经验证据表明,1-范数支持向量机(1-norm SVMs)具有良好的稀疏性;然而,1-norm SVMs 可以达到多好的稀疏性,以及它们是否比标准 SVMs 具有更稀疏的表示,这些都不清楚。在本文中,我们考虑了 1-norm SVMs 的稀疏性。提出了两种关于 1-norm SVMs 决策函数中非零系数数量的上界。首先,1-norm SVMs 中非零系数的数量最多等于仅位于+1 和-1 判别面上的精确支持向量的数量,而标准 SVMs 中的数量等于支持向量的数量,这意味着 1-norm SVMs 比标准 SVMs 具有更好的稀疏性。其次,非零系数的数量最多等于样本矩阵的秩。简要回顾了线性规划的几何形状和原始最陡边定价单纯形法,这使我们能够证明这两个上界,并通过实验评估它们的紧度。在玩具数据集和 UCI 数据集上的实验结果说明了我们的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验