Suppr超能文献

一个控制花粉与雌蕊兼容性的自私基因导致了玉米近缘种之间的生殖隔离。

A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

作者信息

Kermicle Jerry L

机构信息

Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2006 Jan;172(1):499-506. doi: 10.1534/genetics.105.048645. Epub 2005 Sep 12.

Abstract

Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

摘要

玉米的一些近亲种群,即墨西哥一年生类蜀黍,对玉米花粉不具有接受性。当存在于雌蕊(花丝和子房)中时,一些玉米基因会区分或排斥携带不同等位基因的花粉。在一些类蜀黍种群中发现了一个类似的基因Tcb1-s,但在同域或邻域的玉米中未发现。它在野生类蜀黍种群中具有多态性,但在与玉米作为杂草紧密伴生的种群中经常出现。将Tcb1-s导入玉米后,能基本完全恢复与携带Tcb1-s的类蜀黍的亲和性。尽管Tcb1-s花粉能使tcb1 tcb1玉米受精,但相对于tcb1花粉,它处于竞争劣势。因此,Tcb1-s对杂交亲和性的影响是双向的。在没有玉米的情况下,Tcb1-s在类蜀黍种群中可以增加而不提高其适合度。在有玉米的情况下,Tcb1-s似乎已被用于提供生殖隔离以适应耕种生境。

相似文献

1
A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.
Genetics. 2006 Jan;172(1):499-506. doi: 10.1534/genetics.105.048645. Epub 2005 Sep 12.
3
Genetic and cellular analysis of cross-incompatibility in Zea mays.
Plant Reprod. 2014 Mar;27(1):19-29. doi: 10.1007/s00497-013-0236-5. Epub 2013 Nov 6.
4
Pollination between maize and teosinte: an important determinant of gene flow in Mexico.
Theor Appl Genet. 2005 Feb;110(3):519-26. doi: 10.1007/s00122-004-1859-6. Epub 2004 Dec 9.
5
A pollen expressed PME gene at Tcb1 locus confers maize unilateral cross-incompatibility.
Plant Biotechnol J. 2023 Mar;21(3):454-456. doi: 10.1111/pbi.13962. Epub 2022 Dec 19.
6
A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays.
Nat Commun. 2019 May 24;10(1):2304. doi: 10.1038/s41467-019-10259-0.
7
Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
PLoS One. 2015 Jul 10;10(7):e0131549. doi: 10.1371/journal.pone.0131549. eCollection 2015.
8
Insights into the molecular control of cross-incompatibility in Zea mays.
Plant Reprod. 2020 Dec;33(3-4):117-128. doi: 10.1007/s00497-020-00394-w. Epub 2020 Aug 31.
9
Spontaneous hybridization between maize and teosinte.
J Hered. 2007 Mar-Apr;98(2):183-7. doi: 10.1093/jhered/esm002. Epub 2007 Mar 30.
10
Teosinte in Europe - Searching for the Origin of a Novel Weed.
Sci Rep. 2017 May 8;7(1):1560. doi: 10.1038/s41598-017-01478-w.

引用本文的文献

1
Molecular evolution of a reproductive barrier in maize and related species.
Genetics. 2025 Jul 9;230(3). doi: 10.1093/genetics/iyaf085.
2
Genome assembly and population genomic analysis reveal the genetic basis of popcorn evolution.
Plant Biotechnol J. 2025 Jul;23(7):2911-2927. doi: 10.1111/pbi.70125. Epub 2025 May 5.
4
Popcorn ( var. ) haploids identified by Navajo phenotype and ploidy level.
Front Plant Sci. 2023 May 30;14:1176504. doi: 10.3389/fpls.2023.1176504. eCollection 2023.
6
Conflict over fertilization underlies the transient evolution of reinforcement.
PLoS Biol. 2022 Oct 13;20(10):e3001814. doi: 10.1371/journal.pbio.3001814. eCollection 2022 Oct.
8
Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte.
PLoS Genet. 2021 Dec 20;17(12):e1009797. doi: 10.1371/journal.pgen.1009797. eCollection 2021 Dec.
9
The Evolution of Sex is Tempered by Costly Hybridization in Boechera (Rock Cress).
J Hered. 2021 Mar 12;112(1):67-77. doi: 10.1093/jhered/esaa041.

本文引用的文献

1
Genetic diversity and population structure of teosinte.
Genetics. 2005 Apr;169(4):2241-54. doi: 10.1534/genetics.104.031393. Epub 2005 Jan 31.
2
Species specificity in pollen-pistil interactions.
Annu Rev Genet. 2004;38:793-818. doi: 10.1146/annurev.genet.38.072902.092356.
3
The molecular and genetic bases of S-RNase-based self-incompatibility.
Plant Cell. 2004;16 Suppl(Suppl):S72-83. doi: 10.1105/tpc.016154. Epub 2004 Mar 9.
4
Sexual selection: an evolutionary force in plants?
Biol Rev Camb Philos Soc. 2002 Nov;77(4):537-62. doi: 10.1017/s1464793102005973.
6
Intraspecific violation of genetic colinearity and its implications in maize.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9573-8. doi: 10.1073/pnas.132259199. Epub 2002 Jun 11.
7
A single domestication for maize shown by multilocus microsatellite genotyping.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080-4. doi: 10.1073/pnas.052125199.
8
Recognition and rejection of self in plant reproduction.
Science. 2002 Apr 12;296(5566):305-8. doi: 10.1126/science.296.5566.305.
9
Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1082-7. doi: 10.1073/pnas.022635499. Epub 2002 Jan 15.
10
A genome-wide survey of reproductive barriers in an intraspecific hybrid.
Genetics. 2001 Oct;159(2):883-92. doi: 10.1093/genetics/159.2.883.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验