Thorsøe Karina Sinding, Bak Søren, Olsen Carl Erik, Imberty Anne, Breton Christelle, Lindberg Møller Birger
Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Copenhagen, Denmark.
Plant Physiol. 2005 Oct;139(2):664-73. doi: 10.1104/pp.105.063842. Epub 2005 Sep 16.
Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. A structural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.
植物能产生大量结构多样的天然产物。其生物合成的最后一步通常是由1家族糖基转移酶(GT)催化的糖基化步骤。在高粱中氰基糖苷蜀黍苷的生物合成过程中,尿苷二磷酸葡萄糖基转移酶UGT85B1催化对羟基苯乙腈转化为蜀黍苷。基于疏水簇分析以及两种细菌GT(GtfA和GtfB)的晶体结构构建了UGT85B1的结构模型,这两种细菌GT与UGT85B1的总体氨基酸序列同一性均约为15%。该模型能够预测对催化作用和糖供体特异性重要的氨基酸残基。预测对羟基苯乙腈和尿苷二磷酸葡萄糖(Glc)与第410位的谷氨酸残基处于氢键作用距离内,有利于糖基转移。受体与组氨酸H23处于范德华力作用距离内。丝氨酸S391和精氨酸R201与尿苷二磷酸葡萄糖的焦磷酸部分形成氢键,从而稳定糖供体的结合。尿苷二磷酸糖的对接预测尿苷二磷酸葡萄糖将作为UGT85B1中唯一的供体糖。生化分析证实了这一点。通过对选定残基进行定点诱变并使用酶分析验证了该模型的预测能力。该建模方法提供了一种工具,可用于设计具有新的所需底物特异性的GT,以用于生物技术应用。该建模确定了一个包含疏水补丁的高变环(氨基酸残基156 - 188)。讨论了该环在介导UGT85B1与蜀黍苷代谢体中的细胞色素P450、CYP79A1和CYP71E1结合中的作用。