Tomatis Pablo E, Rasia Rodolfo M, Segovia Lorenzo, Vila Alejandro J
Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13761-6. doi: 10.1073/pnas.0503495102. Epub 2005 Sep 19.
Metallo-beta-lactamases (MBLs) represent the latest generation of beta-lactamases. The structural diversity and broad substrate profile of MBLs allow them to confer resistance to most beta-lactam antibiotics. To explore the evolutionary potential of these enzymes, we have subjected the Bacillus cereus MBL (BcII) to a directed evolution scheme, which resulted in an increased hydrolytic efficiency toward cephalexin. A systematic study of the hydrolytic profile, substrate binding, and active-site features of the evolved lactamase reveal that directed evolution has shaped the active site by means of remote mutations to better hydrolyze cephalosporins with small, uncharged C-3 substituents. One of these mutations is found in related enzymes from pathogenic bacteria and is responsible for the increase in that enzyme's hydrolytic profile. The mutations lowered the activation energy of the rate-limiting step rather than improved the affinity of the enzyme toward these substrates. The following conclusions can be made: (i) MBLs are able to expand their substrate spectrum without sacrificing their inherent hydrolytic capabilities; (ii) directed evolution is able to mimic mutations that occur in nature; (iii) the metal-ligand strength is tuned by second-shell mutations, thereby influencing the catalytic efficiency; and (iv) changes in the position of the second Zn(II) ion in MBLs affect the substrate positioning in the active site. Overall, these results show that the evolution of enzymatic catalysis can take place by remote mutations controlling reactivity.
金属β-内酰胺酶(MBLs)代表了最新一代的β-内酰胺酶。MBLs的结构多样性和广泛的底物谱使其能够对大多数β-内酰胺抗生素产生耐药性。为了探索这些酶的进化潜力,我们对蜡样芽孢杆菌MBL(BcII)实施了定向进化方案,结果使其对头孢氨苄的水解效率提高。对进化后的内酰胺酶的水解谱、底物结合和活性位点特征进行的系统研究表明,定向进化通过远距离突变塑造了活性位点,从而更好地水解具有小的、不带电荷的C-3取代基的头孢菌素。这些突变之一在病原菌的相关酶中也有发现,并且导致了该酶水解谱的增加。这些突变降低了限速步骤的活化能,而不是提高了酶对这些底物的亲和力。可以得出以下结论:(i)MBLs能够在不牺牲其固有水解能力的情况下扩展其底物谱;(ii)定向进化能够模拟自然界中发生的突变;(iii)金属配体强度通过二级壳层突变进行调节,从而影响催化效率;(iv)MBLs中第二个Zn(II)离子位置的变化会影响活性位点中底物的定位。总体而言,这些结果表明酶催化的进化可以通过控制反应性的远距离突变来实现。