Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina.
Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
抗微生物耐药性是当前临床医学中的主要问题之一。编码耐药决定因素的基因在细菌中的传播挑战了已批准抗生素的使用,缩小了治疗选择的范围。对碳青霉烯类抗生素(最后手段的抗生素)的耐药性是一个主要关注点。金属β-内酰胺酶(MBLs)水解碳青霉烯类、青霉素类和头孢菌素类抗生素,成为这一问题的核心。这些酶在结构、活性位点和催化特征方面与丝氨酸β-内酰胺酶不同。阐明其催化机制是该领域的一个重大挑战,限制了有用抑制剂的开发。本综述全面介绍了活性位点化学、MBL 等位基因多样性、针对不同底物的催化机制以及这些信息如何有助于开发抑制剂的详细信息。我们还讨论了理解 MBL 赋予耐药性成功的关键方面:它们传播的分子决定因素、它们的细胞生理学,从生物发生到涉及周质转运的加工,以及在金属饥饿条件下(如感染期间遇到的条件)摄取 Zn(II) 离子。在这方面,化学、生化和微生物学方面提供了对 MBL 现有知识的综合看法。