Suppr超能文献

金属β-内酰胺酶在多药耐药时代:从结构和机制到进化、传播和抑制剂设计。

Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.

机构信息

Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina.

Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.

出版信息

Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.

Abstract

Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.

摘要

抗微生物耐药性是当前临床医学中的主要问题之一。编码耐药决定因素的基因在细菌中的传播挑战了已批准抗生素的使用,缩小了治疗选择的范围。对碳青霉烯类抗生素(最后手段的抗生素)的耐药性是一个主要关注点。金属β-内酰胺酶(MBLs)水解碳青霉烯类、青霉素类和头孢菌素类抗生素,成为这一问题的核心。这些酶在结构、活性位点和催化特征方面与丝氨酸β-内酰胺酶不同。阐明其催化机制是该领域的一个重大挑战,限制了有用抑制剂的开发。本综述全面介绍了活性位点化学、MBL 等位基因多样性、针对不同底物的催化机制以及这些信息如何有助于开发抑制剂的详细信息。我们还讨论了理解 MBL 赋予耐药性成功的关键方面:它们传播的分子决定因素、它们的细胞生理学,从生物发生到涉及周质转运的加工,以及在金属饥饿条件下(如感染期间遇到的条件)摄取 Zn(II) 离子。在这方面,化学、生化和微生物学方面提供了对 MBL 现有知识的综合看法。

相似文献

1
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
2
Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors.
Appl Environ Microbiol. 2018 Aug 31;84(18). doi: 10.1128/AEM.00698-18. Print 2018 Sep 15.
3
Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors.
Molecules. 2024 Aug 21;29(16):3944. doi: 10.3390/molecules29163944.
4
A close look onto structural models and primary ligands of metallo-β-lactamases.
Drug Resist Updat. 2018 Sep;40:1-12. doi: 10.1016/j.drup.2018.08.001. Epub 2018 Aug 25.
6
Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.
Biomolecules. 2020 Jun 3;10(6):854. doi: 10.3390/biom10060854.
7
The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters.
Trends Pharmacol Sci. 2018 Jul;39(7):635-647. doi: 10.1016/j.tips.2018.03.007. Epub 2018 Apr 18.
8
Progress toward inhibitors of metallo-β-lactamases.
Future Med Chem. 2017 May;9(7):673-691. doi: 10.4155/fmc-2017-0007. Epub 2017 May 15.
10
Designing Inhibitors of β-Lactamase Enzymes to Overcome Carbapenem Resistance in Gram-Negative Bacteria.
Acc Chem Res. 2021 May 4;54(9):2055-2064. doi: 10.1021/acs.accounts.0c00863. Epub 2021 Mar 31.

引用本文的文献

1
Sustainable Joullié-Ugi and Continuous Flow Implementation Led to Novel Captopril-Inspired Broad-Spectrum Metallo-β-Lactamase Inhibitors.
J Med Chem. 2025 Aug 28;68(16):17236-17257. doi: 10.1021/acs.jmedchem.5c00750. Epub 2025 Aug 15.
3
Inhibitor Affinity Differs among Clinical Variants of IMP Metallo--Lactamases: Analysis and Implications for Inhibitor Design.
ACS Infect Dis. 2025 Aug 8;11(8):2157-2168. doi: 10.1021/acsinfecdis.5c00138. Epub 2025 Jul 24.
4
The genetic context of blaIMP varies among bacterial families from One Health sources.
PLoS One. 2025 Jul 23;20(7):e0327200. doi: 10.1371/journal.pone.0327200. eCollection 2025.
5
The impact of zinc supplementation on carbapenem MICs among bacteria expressing IMP metallo-beta-lactamase.
Access Microbiol. 2025 Jun 26;7(6). doi: 10.1099/acmi.0.000972.v4. eCollection 2025.
6
Crystal structure reveals the hydrophilic R1 group impairs NDM-1-ligand binding via water penetration at L3.
J Struct Biol X. 2025 Jul 1;12:100133. doi: 10.1016/j.yjsbx.2025.100133. eCollection 2025 Dec.
7
Small-molecule strategies to combat antibiotic resistance: mechanisms, modifications, and contemporary approaches.
RSC Adv. 2025 Jul 14;15(30):24450-24474. doi: 10.1039/d5ra04047g. eCollection 2025 Jul 10.
8
Development and evaluation of 1,4,7-triazacyclononane-coupled β-lactams against metallo-β-lactamase producing bacteria.
RSC Adv. 2025 Jul 7;15(29):23427-23440. doi: 10.1039/d5ra01842k. eCollection 2025 Jul 4.

本文引用的文献

2
Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants.
Antimicrob Agents Chemother. 2021 Mar 18;65(4). doi: 10.1128/AAC.01714-20.
3
Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis.
Heliyon. 2021 Jan 2;7(1):e05867. doi: 10.1016/j.heliyon.2020.e05867. eCollection 2021 Jan.
4
Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis.
Clin Microbiol Infect. 2021 Apr;27(4):520-531. doi: 10.1016/j.cmi.2020.12.018. Epub 2021 Jan 5.
5
A general strategy to inhibit serine protease by targeting its autolysis loop.
FASEB J. 2021 Feb;35(2):e21259. doi: 10.1096/fj.202002139RR.
6
β-Lactams against the Fortress of the Gram-Positive Bacterium.
Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.
7
Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors.
Bioorg Med Chem. 2021 Jan 1;29:115902. doi: 10.1016/j.bmc.2020.115902. Epub 2020 Dec 3.
8
Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1.
ChemMedChem. 2021 Feb 17;16(4):654-661. doi: 10.1002/cmdc.202000607. Epub 2020 Nov 19.
9
Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level.
Genes (Basel). 2020 Oct 22;11(11):1239. doi: 10.3390/genes11111239.
10
Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin.
Nat Commun. 2020 Oct 16;11(1):5263. doi: 10.1038/s41467-020-18939-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验