通过ROC曲线比较不同的血液透析评估方法:从人工智能到现有方法
Comparison of different methods for hemodialysis evaluation by means of ROC curves: from artificial intelligence to current methods.
作者信息
Fernández E A, Valtuille R, Presedo J M R, Willshaw P
机构信息
Catholic University of Córdoba and Conicet, Córdoba, Argentina.
出版信息
Clin Nephrol. 2005 Sep;64(3):205-13. doi: 10.5414/cnp64205.
BACKGROUND
The National Kidney Foundation Guidelines (DOQI) and the European Renal Association (ERA) have set standards for adequacy of hemodialysis treatment. They recommended minimum single pool doses of 1.2 (Kt/Vsp DOQI), and 1.4 (Kt/Vsp ERA) and a "standard" urea removal ratio (URR) of 65%. Here, we compare an Artificial Intelligence Method (AIM) based on an Artificial Neural Network (ANN) and the usual methods for hemodialysis treatment follow-up such as Smye, Daugirdas, standard urea reduction ratio (URR using post-dialysis urea concentration) and modified URR [Cheng et al. 2001] against equilibrated Kt/V and URR calculated using a 60 min post-dialysis urea concentration.
METHODS
We used ROC analysis to evaluate and compare these methodologies. We also propose a method to find a minimum target dose that maximizes the sensitivity, specificity and positive predictive values of the diagnostic tool.
RESULTS
From a URR point of view, the ANN, stdURR and mURR perform almost equally well with an area under the curve (AUC) of 0.90, 0.93 and 0.92, respectively, but the ANN achieved the lowest false positive rate (FPR = 7.94%) and error rate (ER = 12.7%). When Kt/V is used as a dose index, the logarithmic single-and double-pool equations perform almost equally (AUC 0.957 and 0.962), and the ANN method achieves an AUC of 0.934. The lowest FPR was for ANN and Kt/Vsp (4.76%), which also achieved the lowest ER of 6.39%.
CONCLUSIONS
For both cases (URR and Kt/V), the minimum doses required to achieve the lowest FPR and ER for the standard methods (stdURR and Kt/Vsp) were higher than those reported by the DOQI guidelines, being 70% for stdURR and 1.35 for Kt/Vsp, whereas for those methods using the double-pool Kt/V or equilibrated URR, the dose targets were close to those recommended by DOQI and ERA. Our proposed method for target dose selection is easy to understand, and it takes into account both accuracy and confidence of the adequacy tool. We found the ANN method to be superior to the Smye method for estimation of equilibrated urea, and the results presented here suggest that ANN methods could be useful tools in the analysis of nephrology data.
背景
美国国家肾脏基金会指南(DOQI)和欧洲肾脏协会(ERA)已制定血液透析治疗充分性的标准。他们建议单次尿素清除率最低剂量为1.2(Kt/Vsp DOQI)和1.4(Kt/Vsp ERA),以及“标准”尿素清除率(URR)为65%。在此,我们将基于人工神经网络(ANN)的人工智能方法(AIM)与血液透析治疗随访的常用方法(如Smye法、Daugirdas法、标准尿素清除率(使用透析后尿素浓度计算的URR)和改良URR [Cheng等人,2001年])进行比较,以平衡使用透析后60分钟尿素浓度计算的Kt/V和URR。
方法
我们使用ROC分析来评估和比较这些方法。我们还提出了一种方法来找到使诊断工具的敏感性、特异性和阳性预测值最大化的最低目标剂量。
结果
从URR的角度来看,ANN、stdURR和mURR的表现几乎同样出色,曲线下面积(AUC)分别为0.90、0.93和0.92,但ANN的假阳性率最低(FPR = 7.94%)和错误率最低(ER = 12.7%)。当将Kt/V用作剂量指标时,对数单池和双池方程的表现几乎相同(AUC分别为0.957和0.962),而ANN方法的AUC为0.934。最低的FPR是ANN和Kt/Vsp(4.76%),其ER也最低,为6.39%。
结论
对于两种情况(URR和Kt/V),标准方法(stdURR和Kt/Vsp)达到最低FPR和ER所需的最低剂量高于DOQI指南报告的剂量,stdURR为70%,Kt/Vsp为1.35,而对于使用双池Kt/V或平衡URR的方法,剂量目标接近DOQI和ERA推荐的剂量。我们提出的目标剂量选择方法易于理解,并且考虑了充分性工具的准确性和可信度。我们发现ANN方法在估计平衡尿素方面优于Smye方法,此处给出的结果表明ANN方法可能是分析肾脏病学数据的有用工具。