Suppr超能文献

Mechanism of c-fos induction by active oxygen.

作者信息

Amstad P A, Krupitza G, Cerutti P A

机构信息

Department of Carcinogenesis, Swiss Institute for Experimental Cancer Research, Lausanne.

出版信息

Cancer Res. 1992 Jul 15;52(14):3952-60.

PMID:1617671
Abstract

We have compared the mechanisms of the transcriptional induction of c-fos in mouse epidermal cells JB6 (clone 30) by an extracellular burst of active oxygen of the type produced by inflammatory phagocytes to induction by serum and phorbol ester. All three inducers elicit a characteristic immediate early response of c-fos which is inhibited by the protein kinase inhibitor H7 but enhanced by the protein synthesis inhibitor cycloheximide. Experiments with stable transfectants containing fos 5' upstream regulatory sequences linked to an HSV-tk-chloram-phenicol-acetyl-transferase reporter construct indicate that the joint dyad symmetry element-AP-1 motifs exert the most potent enhancer effect in response to active oxygen as well as serum. It is concluded that the different signal transduction pathways used by these inducers converge to the same 5' regulatory sequences of c-fos. In contrast to these common features only active oxygen induction of c-fos required the poly-ADP-ribosylation of chromosomal proteins. The inhibitors of ADP-ribose transferase benzamide and 3-amino-benzamide suppressed the elongation of the c-fos message and the de novo synthesis of nuclear factors, among them c-Fos and c-Jun, which bind to the fos-AP-1 motif in vitro only following stimulation with active oxygen. No active oxygen-induced change was observed in the protein complex which binds to an oligonucleotide containing the SIF and dyad symmetry element motifs in vitro. The presence of Fos and Jun proteins was detected in this complex. Only active oxygen, but not serum or phorbol ester, induces DNA breakage. We propose that poly-ADP-ribosylation is required because it participates in the repair of DNA breaks which interfere with transcription. We observed that Fos protein is weakly poly-ADP-ribosylated in response to active oxygen, but the functional role of this modification remains unclear.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验