Zhang Hao, Xu Yingkai, Joseph Joy, Kalyanaraman B
Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
J Biol Chem. 2005 Dec 9;280(49):40684-98. doi: 10.1074/jbc.M504503200. Epub 2005 Sep 21.
We investigated the effects of a cysteine residue on tyrosine nitration in several model peptides treated with myeloperoxidase (MPO), H(2)O(2), and nitrite anion (NO(2)(-)) and with horseradish peroxidase and H(2)O(2). Sequences of model peptides were acetyl-Tyr-Cys-amide (YC), acetyl-Tyr-Ala-Cys-amide (YAC), acetyl-Tyr-Ala-Ala-Cys-amide (YAAC), and acetyl-Tyr-Ala-Ala-Ala-Ala-Cys-amide (YAAAAC). Results indicate that nitration and oxidation products of tyrosyl residue in YC and other model peptides were barely detectable. A major product detected was the corresponding disulfide (e.g. YCysCysY). Spin trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) revealed thiyl adduct (e.g. DMPO-SCys-Tyr) formation from peptides (e.g. YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). The steady-state concentrations of DMPO-thiyl adducts decreased with increasing chain length of model peptides. Blocking the sulfydryl group in YC with methylmethanethiosulfonate (that formed YCSSCH(3)) totally inhibited thiyl radical formation as did substitution of Tyr with Phe (i.e. FC) in the presence of MPO/H(2)O(2)/NO(2)(-). However, increased tyrosine nitration, tyrosine dimerization, and tyrosyl radical formation were detected in the MPO/H(2)O(2)/NO(2)(-)/YCSSCH(3) system. Increased formation of S-nitrosated YC (YCysNO) was detected in the MPO/H(2)O(2)/(*)NO system. We conclude that a rapid intramolecular electron transfer reaction between the tyrosyl radical and the Cys residue impedes tyrosine nitration and induces corresponding thiyl radical and nitrosocysteine product. Implications of this novel intramolecular electron transfer mechanism in protein nitration and nitrosation are discussed.
我们研究了半胱氨酸残基对几种经髓过氧化物酶(MPO)、过氧化氢(H₂O₂)和亚硝酸根阴离子(NO₂⁻)处理以及经辣根过氧化物酶和H₂O₂处理的模型肽中酪氨酸硝化的影响。模型肽的序列分别为乙酰基 - 酪氨酸 - 半胱氨酸 - 酰胺(YC)、乙酰基 - 酪氨酸 - 丙氨酸 - 半胱氨酸 - 酰胺(YAC)、乙酰基 - 酪氨酸 - 丙氨酸 - 丙氨酸 - 半胱氨酸 - 酰胺(YAAC)和乙酰基 - 酪氨酸 - 丙氨酸 - 丙氨酸 - 丙氨酸 - 丙氨酸 - 半胱氨酸 - 酰胺(YAAAAC)。结果表明,YC和其他模型肽中酪氨酸残基的硝化和氧化产物几乎检测不到。检测到的主要产物是相应的二硫键(例如YCysCysY)。用5,5'-二甲基 - 1 - 吡咯啉N - 氧化物(DMPO)进行的自旋捕获实验表明,经MPO/H₂O₂和MPO/H₂O₂/NO₂⁻处理的肽(例如YC)会形成硫自由基加合物(例如DMPO - SCys - Tyr)。DMPO - 硫自由基加合物的稳态浓度随着模型肽链长度的增加而降低。用甲硫基磺酸甲酯封闭YC中的巯基(形成YCSSCH₃)完全抑制了硫自由基的形成,在MPO/H₂O₂/NO₂⁻存在的情况下用苯丙氨酸取代酪氨酸(即FC)也有同样的效果。然而,在MPO/H₂O₂/NO₂⁻/YCSSCH₃体系中检测到酪氨酸硝化、酪氨酸二聚化和酪氨酸自由基形成增加。在MPO/H₂O₂/(*)NO体系中检测到S - 亚硝基化的YC(YCysNO)形成增加。我们得出结论,酪氨酸自由基与半胱氨酸残基之间快速的分子内电子转移反应阻碍了酪氨酸硝化,并诱导产生相应的硫自由基和亚硝基半胱氨酸产物。讨论了这种新型分子内电子转移机制在蛋白质硝化和亚硝化中的意义。