Suppr超能文献

分子内电子转移机制对氧化还原敏感氨基酸的生物硝化、亚硝化及氧化反应的影响。

Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids.

作者信息

Zhang Hao, Xu Yingkai, Joseph Joy, Kalyanaraman B

机构信息

Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

Methods Enzymol. 2008;440:65-94. doi: 10.1016/S0076-6879(07)00804-X.

Abstract

Using both high-performance liquid chromatography (HPLC) and electron spin resonance (ESR) spin-trappng techniques, we developed an analytical methodology for investigating intramolecular electron transfer-mediated tyrosyl nitration and cysteine nitrosation in model peptides. Peptides N-acetyl-TyrCys-amide (YC), N-acetyl-TyrAlaCys-amide, N-acetyl-TyrAlaAlaCys-amide, and N-acetyl-TyrAlaAlaAlaAlaCys-amide were used as models. Product analysis showed that nitration and oxidation products derived from YC and related peptides in the presence of myeloperoxidase (MPO)/H(2)O(2)/NO(2)(-) were not detectable. The major product was determined to be the corresponding disulfide (e.g., YCysCysY), suggestive of a rapid electron transfer from the tyrosyl radical to the cysteinyl residue. ESR spin-trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that thiyl radical intermediates were formed from peptides (e.g., YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). Blocking the thiol group in YC totally abrogated thiyl radical formation. Under similar conditions, we were, however, able to trap the tyrosyl radical using the spin trap dibromonitrosobenzene sulfonic acid (DBNBS). Competition spin-trapping experiments revealed that intramolecular electron transfer is the dominant mechanism for thiyl radical formation in YC peptides. We conclude that a rapid intramolecular electron transfer mechanism between redox-sensitive amino acids could influence both protein nitration and nitrosation reactions. This mechanism brings together nitrative, nitrosative, and oxidative mechanisms in free radical biology.

摘要

我们运用高效液相色谱(HPLC)和电子自旋共振(ESR)自旋捕获技术,开发了一种分析方法,用于研究模型肽中分子内电子转移介导的酪氨酸硝化和半胱氨酸亚硝化。使用肽N-乙酰基-TyrCys-酰胺(YC)、N-乙酰基-TyrAlaCys-酰胺、N-乙酰基-TyrAlaAlaCys-酰胺和N-乙酰基-TyrAlaAlaAlaAlaCys-酰胺作为模型。产物分析表明,在髓过氧化物酶(MPO)/H₂O₂/NO₂⁻存在下,源自YC和相关肽的硝化和氧化产物无法检测到。确定主要产物为相应的二硫键(例如,YCysCysY),这表明从酪氨酸自由基到半胱氨酸残基存在快速电子转移。用5,5'-二甲基-1-吡咯啉N-氧化物(DMPO)进行的ESR自旋捕获实验表明,用MPO/H₂O₂和MPO/H₂O₂/NO₂⁻处理的肽(例如,YC)形成了硫自由基中间体。封闭YC中的巯基完全消除了硫自由基的形成。然而,在类似条件下,我们能够使用自旋捕获剂二溴亚硝基苯磺酸(DBNBS)捕获酪氨酸自由基。竞争自旋捕获实验表明,分子内电子转移是YC肽中硫自由基形成的主要机制。我们得出结论,氧化还原敏感氨基酸之间快速的分子内电子转移机制可能影响蛋白质的硝化和亚硝化反应。这种机制将自由基生物学中的硝化、亚硝化和氧化机制联系在一起。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验