Takayasu Yukihiro, Iino Masae, Kakegawa Wataru, Maeno Hiroshi, Watase Kei, Wada Keiji, Yanagihara Dai, Miyazaki Taisuke, Komine Okiru, Watanabe Masahiko, Tanaka Kohichi, Ozawa Seiji
Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
J Neurosci. 2005 Sep 21;25(38):8788-93. doi: 10.1523/JNEUROSCI.1020-05.2005.
Glutamate transporters are essential for terminating excitatory neurotransmission. Two distinct glutamate transporters, glutamate-aspartate transporter (GLAST) and excitatory amino acid transporter 4 (EAAT4), are expressed most abundantly in the molecular layer of the cerebellar cortex. GLAST is expressed in Bergmann glial processes surrounding excitatory synapses on Purkinje cell dendritic spines, whereas EAAT4 is concentrated on the extrasynaptic regions of Purkinje cell spine membranes. To clarify the functional significance of the coexistence of these transporters, we analyzed the kinetics of EPSCs in Purkinje cells of mice lacking either GLAST or EAAT4. There was no difference in the amplitude or the kinetics of the rising and initial decay phase of EPSCs evoked by stimulations of climbing fibers and parallel fibers between wild-type and EAAT4-deficient mice. However, long-lasting tail currents of the EPSCs appeared age dependently in most of Purkinje cells in EAAT4-deficient mice. These tail currents were never seen in mice lacking GLAST. In the GLAST-deficient mice, however, the application of cyclothiazide that reduces desensitization of AMPA receptors increased the peak amplitude of the EPSC and prolonged its decay more markedly than in both wild-type and EAAT4-deficient mice. The results indicate that these transporters play differential roles in the removal of synaptically released glutamate. GLAST contributes mainly to uptake of glutamate that floods out of the synaptic cleft at early times after transmitter release. In contrast, the main role of EAAT4 is to remove low concentrations of glutamate that escape from the uptake by glial transporters at late times and thus prevents the transmitter from spilling over to neighboring synapses.
谷氨酸转运体对于终止兴奋性神经传递至关重要。两种不同的谷氨酸转运体,即谷氨酸 - 天冬氨酸转运体(GLAST)和兴奋性氨基酸转运体4(EAAT4),在小脑皮质分子层中表达最为丰富。GLAST表达于围绕浦肯野细胞树突棘上兴奋性突触的伯格曼胶质细胞突起中,而EAAT4则集中于浦肯野细胞棘突膜的突触外区域。为阐明这些转运体共存的功能意义,我们分析了缺乏GLAST或EAAT4的小鼠浦肯野细胞中兴奋性突触后电流(EPSC)的动力学。野生型小鼠和EAAT4缺陷型小鼠在刺激攀爬纤维和平行纤维诱发的EPSC的幅度以及上升和初始衰减阶段的动力学方面没有差异。然而,在EAAT4缺陷型小鼠的大多数浦肯野细胞中,EPSC的长时程尾电流呈年龄依赖性出现。在缺乏GLAST的小鼠中从未观察到这些尾电流。然而,在缺乏GLAST的小鼠中,应用可降低AMPA受体脱敏的环噻嗪,与野生型和EAAT4缺陷型小鼠相比,更显著地增加了EPSC的峰值幅度并延长了其衰减时间。结果表明,这些转运体在清除突触释放的谷氨酸方面发挥着不同的作用。GLAST主要有助于摄取在递质释放后早期从突触间隙溢出的谷氨酸。相反,EAAT4的主要作用是清除在后期从胶质转运体摄取中逃逸的低浓度谷氨酸,从而防止递质扩散到相邻突触。