Storm Arnold J, Storm Cornelis, Chen Jianghua, Zandbergen Henny, Joanny Jean-François, Dekker Cees
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 22628 CJ Delft, The Netherlands.
Nano Lett. 2005 Jul;5(7):1193-7. doi: 10.1021/nl048030d.
We report experiments and modeling of translocation of double-strand DNA through a siliconoxide nanopore. Long DNA molecules with different lengths ranging from 6500 to 97000 base pairs have been electrophoretically driven through a 10 nm pore. We observe a power-law caling of the translocation time with the length, with an exponent of 1.27. This nonlinear scaling is strikingly different from the well-studied linear behavior observed in similar experiments performed on protein pores. We present a theoretical model where hydrodynamic drag on the ection of the polymer outside the pore is the dominant force counteracting the electrical driving force. We show that this applies to our experiments, and we derive a power-law scaling with an exponent of 1.22, in good agreement with the data.
我们报告了双链DNA通过二氧化硅纳米孔转位的实验和建模。长度从6500到97000碱基对不等的长DNA分子已通过电泳驱动穿过一个10纳米的孔。我们观察到转位时间与长度呈幂律关系,指数为1.27。这种非线性标度与在蛋白质孔上进行的类似实验中观察到的经过充分研究的线性行为显著不同。我们提出了一个理论模型,其中孔外聚合物部分上的流体动力学阻力是抵消电驱动力的主要力量。我们表明这适用于我们的实验,并且我们推导出指数为1.22的幂律标度,与数据吻合良好。