Suppr超能文献

聚合物在固态纳米孔中的迁移:缩放行为对孔径和外加电压的依赖性。

Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.

机构信息

Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

J Chem Phys. 2012 Feb 14;136(6):065105. doi: 10.1063/1.3682777.

Abstract

We investigate unforced and forced translocation of a Rouse polymer (in the absence of hydrodynamic interactions) through a silicon nitride nanopore by three-dimensional Langevin dynamics simulations, as a function of pore dimensions and applied voltage. Our nanopore model consists of an atomistically detailed nanopore constructed using the crystal structure of β-Si(3)N(4). We also use realistic parameters in our simulation models rather than traditional dimensionless quantities. When the polymer length is much larger than the pore length, we find the translocation time versus chain length scales as τ ∼ N(2+ν) for the unforced case and as τ ∼ N((1+2ν)/(1+ν)) for the forced case. Our results agree with theoretical predictions which indicate that memory effects and tension on the polymer chain play an important role during the translocation process. We also find that the scaling exponents are highly dependent on the applied voltage (force). When the length of the polymer is on the order of the length of the pore, we do not find a continuous scaling law, but rather scaling exponents that increase as the length of the polymer increases. Finally, we investigate the scaling behavior of translocation time versus applied voltage for different polymer and pore lengths. For long pores, we obtain the theoretical scaling law of τ ∼ 1/V(α), where α ≅ 1 for all voltages and polymer lengths. For short pores, we find that α decreases for very large voltages and/or small polymer lengths, indicating that the value of α = 1 is not universal. The results of our simulations are discussed in the context of experimental measurements made under different conditions and with differing pore geometries.

摘要

我们通过三维 Langevin动力学模拟,研究了在没有流体力学相互作用的情况下,Rouse 聚合物(无强迫和强迫)通过氮化硅纳米孔的非强迫和强迫输运,作为孔径和外加电压的函数。我们的纳米孔模型由使用β-Si(3)N(4)晶体结构构建的原子细节纳米孔组成。我们还在模拟模型中使用了实际参数,而不是传统的无量纲量。当聚合物长度远大于孔长度时,我们发现无强迫情况下的输运时间与链长的标度关系为 τ∼N(2+ν),而强迫情况下的标度关系为 τ∼N((1+2ν)/(1+ν))。我们的结果与理论预测一致,表明记忆效应和聚合物链上的张力在输运过程中起着重要作用。我们还发现,标度指数高度依赖于外加电压(力)。当聚合物的长度与孔的长度相当时,我们没有发现连续的标度律,而是随着聚合物长度的增加,标度指数增加。最后,我们研究了不同聚合物和孔长度下输运时间与外加电压的标度行为。对于长孔,我们得到了 τ∼1/V(α)的理论标度律,其中对于所有电压和聚合物长度,α ≅ 1。对于短孔,我们发现对于非常大的电压和/或非常小的聚合物长度,α 减小,这表明 α = 1 的值不是普遍的。我们的模拟结果在不同条件下和不同孔径几何形状下的实验测量的背景下进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验