Suppr超能文献

差异基因表达谱中协同调控的检测。

Detection of coregulation in differential gene expression profiles.

作者信息

Perco Paul, Kainz Alexander, Mayer Gert, Lukas Arno, Oberbauer Rainer, Mayer Bernd

机构信息

Institute for Biomolecular Structural Chemistry, University of Vienna, Campus Vienna Biocenter 6, 1030 Vienna, Austria.

出版信息

Biosystems. 2005 Dec;82(3):235-47. doi: 10.1016/j.biosystems.2005.08.001. Epub 2005 Sep 21.

Abstract

Genomics and proteomics approaches generate distinct gene expression and protein profiles, listing individual genes embedded in broad functional terms as gene ontologies. However, interpretation of gene profiles in a regulatory and functional context remains a major issue. Elucidation of regulatory mechanisms at the gene expression level via analysis of promoter regions is a prominent procedure to decipher such gene regulatory networks. We propose a novel genetic algorithm (GA) to extract joint promoter modules in a set of coexpressed genes as resulting from differential gene expression experiments. Algorithm design has focused on the following constraints: (I) identification of the major promoter modules, which are (II) characterized by a maximum number of joint motifs and (III) are found in a maximum number of coexpressed genes. The capability of the GA in detecting multiple modules was evaluated on various test data sets, analyzing the impact of the number of motifs per promoter module, the number of genes associated with a module, as well as the total number of distinct promoter modules encoded in a sequence set. In addition to the test data sets, the GA was evaluated on two biological examples, namely a muscle-specific data set and the upstream sequences of the beta-actin gene (ACTB) derived from different species, complemented by a comparison to alternative promoter module identification routines.

摘要

基因组学和蛋白质组学方法产生了不同的基因表达和蛋白质谱,将嵌入广泛功能术语中的单个基因列为基因本体。然而,在调控和功能背景下解释基因谱仍然是一个主要问题。通过分析启动子区域在基因表达水平上阐明调控机制是破译此类基因调控网络的一个突出过程。我们提出了一种新颖的遗传算法(GA),用于从差异基因表达实验产生的一组共表达基因中提取联合启动子模块。算法设计集中在以下约束条件上:(I)识别主要启动子模块,这些模块(II)以最大数量的联合基序为特征,并且(III)在最大数量的共表达基因中被发现。在各种测试数据集上评估了GA检测多个模块的能力,分析了每个启动子模块的基序数量、与一个模块相关的基因数量以及序列集中编码的不同启动子模块的总数的影响。除了测试数据集外,还在两个生物学实例上评估了GA,即肌肉特异性数据集和来自不同物种的β-肌动蛋白基因(ACTB)的上游序列,并与替代启动子模块识别程序进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验