Kaburlasos Vassilis G, Papadakis S E
Department of Industrial Informatics, Division of Computing Systems, Technological Educational Institution of Kavala, GR 65404 Kavala, Greece.
Neural Netw. 2006 Jun;19(5):623-43. doi: 10.1016/j.neunet.2005.07.012. Epub 2005 Sep 23.
This work presents a useful extension of Kohonen's Self-Organizing Map (KSOM) for structure identification in linguistic (fuzzy) system modeling applications. More specifically the granular SOM neural model is presented for inducing a distribution of nonparametric fuzzy interval numbers (FINs) from the data. A FIN can represent a local probability distribution function and/or a conventional fuzzy set; moreover, a FIN is interpreted as an information granule. Learning is based on a novel metric distance d(K)(.,.) between FINs. The metric d(K)(.,.) can be tuned nonlinearly by a mass function m(x), the latter attaches a weight of significance to a real number 'x' in a data dimension. Rigorous analysis is based on mathematical lattice theory. A grSOM can cope with ambiguity by processing linguistic (fuzzy) input data and/or intervals. This work presents a simple grSOM variant, namely greedy grSOM, for classification. A genetic algorithm (GA) introduces tunable nonlinearities during training. Extensive comparisons are shown with related work from the literature. The practical effectiveness of the greedy grSOM is demonstrated comparatively in three benchmark classification problems. Statistical evidence strongly suggests that the proposed techniques improve classification performance. In addition, the greedy grSOM induces descriptive decision-making knowledge (fuzzy rules) from the training data.
这项工作展示了Kohonen自组织映射(KSOM)在语言(模糊)系统建模应用中进行结构识别的有用扩展。更具体地说,提出了粒度自组织映射神经模型,用于从数据中诱导非参数模糊区间数(FIN)的分布。一个FIN可以表示局部概率分布函数和/或传统模糊集;此外,一个FIN被解释为一个信息粒度。学习基于FIN之间的一种新型度量距离d(K)(.,.)。度量d(K)(.,.)可以通过质量函数m(x)进行非线性调整,质量函数m(x)为数据维度中的实数“x”赋予一个重要性权重。严格的分析基于数学格理论。一个粒度自组织映射(grSOM)可以通过处理语言(模糊)输入数据和/或区间来应对模糊性。这项工作提出了一种简单的grSOM变体,即贪婪grSOM,用于分类。遗传算法(GA)在训练过程中引入可调非线性。与文献中的相关工作进行了广泛比较。在三个基准分类问题中对贪婪grSOM的实际有效性进行了比较展示。统计证据有力地表明,所提出的技术提高了分类性能。此外,贪婪grSOM从训练数据中诱导出描述性决策知识(模糊规则)。