Suppr超能文献

从复杂化学混合物预测皮肤渗透性。

Predicting skin permeability from complex chemical mixtures.

作者信息

Riviere Jim E, Brooks James D

机构信息

Center for Chemical Toxicology Research and Pharmacokinetics, 4700 Hillsborough Street, North Carolina State University, Raleigh, NC 27606, USA.

出版信息

Toxicol Appl Pharmacol. 2005 Oct 15;208(2):99-110. doi: 10.1016/j.taap.2005.02.016.

Abstract

Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k(p) = c + mMF + a sigma alpha2(H) + b sigma beta2(H) + s pi2(H) + rR2 + vV(x) where sigma alpha2(H) is the hydrogen-bond donor acidity, sigma beta2(H) is the hydrogen-bond acceptor basicity, pi2(H) is the dipolarity/polarizability, R2 represents the excess molar refractivity, and V(x) is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k(p)) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, rho-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies was solely to determine if knowledge of the physical properties of a mixture would improve predicting skin permeability. Inclusion of multiple mixture factors should further improve predictability. The importance of these findings is that there is an approach whereby the effects of a mixture on dermal absorption of a penetrant of interest can be quantitated in a standard QSPeR model if physicochemical properties of the mixture are also incorporated.

摘要

职业性和环境性接触外用化学品通常以复杂化学混合物的形式存在,然而风险评估是基于从单一(通常为水性载体)的单个化学品接触实验得出的数据,或基于计算得出的物理化学性质。我们提出了一种使用混合定量结构渗透关系(QSPeR)模型的方法,其中使用描述单个渗透剂的QSPeR模型以及考虑载体/混合物成分物理化学性质的混合因子(MF),可以很好地预测猪皮流通扩散池中化学物质的吸收情况。基线方程为log k(p) = c + mMF + a sigma alpha2(H) + b sigma beta2(H) + s pi2(H) + rR2 + vV(x),其中sigma alpha2(H)是氢键供体酸度,sigma beta2(H)是氢键受体碱度,pi2(H)是偶极矩/极化率, R2表示过量摩尔折射度,V(x)是目标渗透剂的麦高恩体积;c、m、a、b、s、r和v是将这些描述符与24种混合物中12种渗透剂(阿特拉津、毒死蜱、对硫磷、倍硫磷、甲基对硫磷、壬基酚、对硝基苯酚、五氯苯酚、苯酚、丙嗪、西玛津和三嗪)皮肤渗透率(k(p))相关联的强度系数。混合物由载体(水、乙醇,丙二醇)和添加剂(月桂醇硫酸酯钠、烟酸甲酯)的全因子组合组成。另外一组包含4种不同混合物中的渗透剂(避蚊胺、十二烷基硫酸钠、氯菊酯、蓖麻油酸),用于评估该方法的适用性。这产生了一个包含16种化合物、344种处理组合的数据集。在所有无MF的暴露中,吸收的R2为0.62。加入MF后,相关性提高到0.78。与MF相关的参数包括混合物成分的折射率、极化率和log(1/亨利定律常数)。这些因素不应被视为最终结论,因为这些研究的重点仅仅是确定混合物物理性质的知识是否会改善对皮肤渗透性的预测。纳入多个混合因子应能进一步提高预测能力。这些发现的重要性在于,如果也纳入混合物的物理化学性质,就有一种方法可以在标准QSPeR模型中量化混合物对目标渗透剂皮肤吸收的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验