Henkels Christopher H, Oas Terrence G
Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA.
Biochemistry. 2005 Oct 4;44(39):13014-26. doi: 10.1021/bi0504613.
In Bacillus subtilis, P protein is the noncatalytic component of ribonuclease P (RNase P) that is critical for achieving maximal nuclease activity under physiological conditions. P protein is predominantly unfolded (D) at neutral pH and low ionic strength; however, it folds upon the addition of sulfate anions (ligands) as well as the osmolyte trimethylamine N-oxide (TMAO) [Henkels, C. H., Kurz, J. C., Fierke, C. A., and Oas, T. G. (2001) Biochemistry 40, 2777-2789]. Since the molecular mechanisms that drive protein folding for these two solutes are different, CD thermal denaturation studies were employed to dissect the thermodynamics of protein unfolding from the two folded states. A global fit of the free-energy of TMAO-folded P protein versus [TMAO] and temperature yields T(S), DeltaH(S), and DeltaC(p) of unfolding for the poorly populated, unliganded, folded state (N) in the absence of TMAO. These thermodynamic parameters were used in the fit of the data from the coupled unfolding/ligand dissociation reaction to obtain the sulfate dissociation constant (K(d)) and the DeltaH and DeltaC(p) of dissociation. These fits yielded a DeltaC(p) of protein unfolding of 826 +/- 23 cal mol(-)(1) K(-)(1) and a DeltaC(p) of 1554 +/- 29 cal mol(-)(1) K(-)(1) for the coupled unfolding and dissociation reaction (NL(2) --> D + 2L). The apparent stoichiometry of sulfate binding is two, so the DeltaC(p) increment of ligand dissociation is 363 +/- 9 cal mol(-)(1) K(-)(1) per site. Because N and NL(2) appear to be structurally similar and therefore similarly solvated using standard biophysical analyses, we attribute a substantial portion of this DeltaC(p) increment to an increase in conformational heterogeneity coincident with the NL(2) --> N + 2L transition.
在枯草芽孢杆菌中,P蛋白是核糖核酸酶P(RNase P)的非催化成分,对于在生理条件下实现最大核酸酶活性至关重要。P蛋白在中性pH和低离子强度下主要处于未折叠状态(D);然而,加入硫酸根阴离子(配体)以及渗透溶质三甲胺N-氧化物(TMAO)后它会折叠[亨克斯,C.H.,库尔兹,J.C.,菲克,C.A.,和奥阿斯,T.G.(2001年)《生物化学》40,2777 - 2789]。由于驱动这两种溶质导致蛋白质折叠的分子机制不同,因此采用圆二色性热变性研究来剖析从两种折叠状态展开蛋白质的热力学。对TMAO折叠的P蛋白的自由能与[TMAO]和温度进行全局拟合,得到在没有TMAO时,未结合配体、折叠状态不佳的折叠态(N)展开的T(S)、ΔH(S)和ΔC(p)。这些热力学参数用于拟合来自耦合展开/配体解离反应的数据,以获得硫酸根解离常数(K(d))以及解离的ΔH和ΔC(p)。这些拟合得出蛋白质展开的ΔC(p)为826±23卡摩尔⁻¹K⁻¹,耦合展开和解离反应(NL₂→D + 2L)的ΔC(p)为1554±29卡摩尔⁻¹K⁻¹。硫酸根结合的表观化学计量比为2,因此每个位点配体解离的ΔC(p)增量为363±9卡摩尔⁻¹K⁻¹。因为N和NL₂在结构上似乎相似,因此使用标准生物物理分析方法时溶剂化情况也相似,所以我们将这个ΔC(p)增量的很大一部分归因于与NL₂→N + 2L转变同时发生的构象异质性增加。