Shimba S, Buckley B, Reddy R, Kiss T, Filipowicz W
Baylor College of Medicine, Department of Pharmacology, Houston, Texas 77030.
J Biol Chem. 1992 Jul 5;267(19):13772-7.
U3 small nucleolar RNA (snoRNA) is an abundant small RNA involved in the processing of pre-ribosomal RNA of eukaryotic cells. U3 snoRNA has been previously characterized from several sources, including human, rat, mouse, frog, fruit fly, dinoflagellates, slime mold, and yeast; in all these organisms, U3 snoRNA contains trimethylguanosine cap structure. In all instances where investigated, the trimethylguanosine-capped snRNAs including U3 snoRNA, are synthesized by RNA polymerase II. However, in higher plants, the U3 snoRNA is synthesized by RNA polymerase III and contains a cap structure different from trimethylguanosine (Kiss, T., and Solymosy, F. (1990) Nucleic Acids Res. 18, 1941-1949; Marshallsay, C., Kiss, T., and Filipowicz, W. (1990) Nucleic Acids Res. 18, 3451-3458; Kiss, T., Marshallsay, C., and Filipowicz, W. (1991) Cell 65, 517-526). In this study, we present evidence that cowpea and, most likely, tomato plant U3 snoRNA contains a methyl-pppA cap structure. These data show that the same U3 snoRNA contains different cap structures in different species and suggest that the kind of cap structure that an uridylic acid-rich small nuclear RNA contains is dependent on the RNA polymerase responsible for its synthesis. In vitro synthesized plant U3 snoRNA, with pppA or pppG as its 5' end, was converted to methyl-pppA/G cap structure in vitro when incubated with extracts prepared from wheat germ or HeLa cells. These data show that the capping machinery is conserved in organisms as evolutionarily distant as plants and mammals. Nucleotides 1-45 of tomato U3 snoRNA, which are capable of forming a stem-loop structure, are sufficient to direct the methyl cap formation in vitro.
U3小核仁RNA(snoRNA)是一种丰富的小RNA,参与真核细胞前核糖体RNA的加工过程。U3 snoRNA先前已从多种来源得到鉴定,包括人类、大鼠、小鼠、青蛙、果蝇、双鞭毛虫、黏菌和酵母;在所有这些生物体中,U3 snoRNA都含有三甲基鸟苷帽结构。在所有已研究的情况下,包括U3 snoRNA在内的三甲基鸟苷帽化的小核RNA都是由RNA聚合酶II合成的。然而,在高等植物中,U3 snoRNA是由RNA聚合酶III合成的,并且含有与三甲基鸟苷不同的帽结构(基斯,T.,和索利莫西,F.(1990年)《核酸研究》18卷,1941 - 1949页;马歇尔西,C.,基斯,T.,和菲利波维茨,W.(1990年)《核酸研究》18卷,3451 - 3458页;基斯,T.,马歇尔西,C.,和菲利波维茨,W.(1991年)《细胞》65卷,517 - 526页)。在本研究中,我们提供证据表明豇豆以及很可能番茄植株的U3 snoRNA含有甲基-pppA帽结构。这些数据表明,相同的U3 snoRNA在不同物种中含有不同的帽结构,并表明富含尿苷酸的小核RNA所含帽结构的类型取决于负责其合成的RNA聚合酶。当与从小麦胚芽或海拉细胞制备的提取物一起孵育时,体外合成的以pppA或pppG作为5'端的植物U3 snoRNA在体外被转化为甲基-pppA/G帽结构。这些数据表明,封端机制在植物和哺乳动物等进化距离遥远的生物体中是保守的。番茄U3 snoRNA的第1 - 45个核苷酸能够形成茎环结构,足以在体外指导甲基帽的形成。