Suppr超能文献

复杂网络中最优路径长度分布的标度

Scaling of optimal-path-lengths distribution in complex networks.

作者信息

Kalisky Tomer, Braunstein Lidia A, Buldyrev Sergey V, Havlin Shlomo, Stanley H Eugene

机构信息

Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):025102. doi: 10.1103/PhysRevE.72.025102. Epub 2005 Aug 10.

Abstract

We study the distribution of optimal path lengths in random graphs with random weights associated with each link ("disorder"). With each link i we associate a weight tau(i) = exp (a r(i)), where r(i) is a random number taken from a uniform distribution between 0 and 1, and the parameter a controls the strength of the disorder. We suggest, in an analogy with the average length of the optimal path, that the distribution of optimal path lengths has a universal form that is controlled by the expression (1/p(c)) (l(infinity)/a), where l(infinity) is the optimal path length in strong disorder (a --> infinity) and p(c) is the percolation threshold. This relation is supported by numerical simulations for Erdos-Rényi and scale-free graphs. We explain this phenomenon by showing explicitly the transition between strong disorder and weak disorder at different length scales in a single network.

摘要

我们研究了具有与每条边相关联的随机权重(“无序”)的随机图中最优路径长度的分布。对于每条边(i),我们关联一个权重(\tau(i)=\exp(a r(i))),其中(r(i))是从(0)到(1)的均匀分布中选取的随机数,参数(a)控制无序的强度。我们通过类比最优路径的平均长度,提出最优路径长度的分布具有一种通用形式,该形式由表达式((1/p(c))(l(\infty)/a))控制,其中(l(\infty))是强无序((a\to\infty))时的最优路径长度,(p(c))是渗流阈值。这种关系得到了厄多斯 - 雷尼随机图和无标度随机图的数值模拟的支持。我们通过明确展示单个网络在不同长度尺度下从强无序到弱无序的转变来解释这一现象。

相似文献

1
Scaling of optimal-path-lengths distribution in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):025102. doi: 10.1103/PhysRevE.72.025102. Epub 2005 Aug 10.
2
Effect of disorder strength on optimal paths in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046133. doi: 10.1103/PhysRevE.70.046133. Epub 2004 Oct 29.
3
Universal behavior of optimal paths in weighted networks with general disorder.
Phys Rev Lett. 2006 Feb 17;96(6):068702. doi: 10.1103/PhysRevLett.96.068702. Epub 2006 Feb 16.
4
Optimal paths in disordered complex networks.
Phys Rev Lett. 2003 Oct 17;91(16):168701. doi: 10.1103/PhysRevLett.91.168701.
5
Optimal paths in strong and weak disorder: a unified approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036128. doi: 10.1103/PhysRevE.73.036128. Epub 2006 Mar 28.
6
Possible connection between the optimal path and flow in percolation clusters.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056131. doi: 10.1103/PhysRevE.72.056131. Epub 2005 Nov 28.
7
Scale-free networks emerging from weighted random graphs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):025103. doi: 10.1103/PhysRevE.73.025103. Epub 2006 Feb 10.
8
Optimal paths in complex networks with correlated weights: the worldwide airport network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056104. doi: 10.1103/PhysRevE.74.056104. Epub 2006 Nov 6.
9
Width of percolation transition in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):035101. doi: 10.1103/PhysRevE.73.035101. Epub 2006 Mar 7.
10
Percolation in networks composed of connectivity and dependency links.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051127. doi: 10.1103/PhysRevE.83.051127. Epub 2011 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验