Kalisky Tomer, Braunstein Lidia A, Buldyrev Sergey V, Havlin Shlomo, Stanley H Eugene
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):025102. doi: 10.1103/PhysRevE.72.025102. Epub 2005 Aug 10.
We study the distribution of optimal path lengths in random graphs with random weights associated with each link ("disorder"). With each link i we associate a weight tau(i) = exp (a r(i)), where r(i) is a random number taken from a uniform distribution between 0 and 1, and the parameter a controls the strength of the disorder. We suggest, in an analogy with the average length of the optimal path, that the distribution of optimal path lengths has a universal form that is controlled by the expression (1/p(c)) (l(infinity)/a), where l(infinity) is the optimal path length in strong disorder (a --> infinity) and p(c) is the percolation threshold. This relation is supported by numerical simulations for Erdos-Rényi and scale-free graphs. We explain this phenomenon by showing explicitly the transition between strong disorder and weak disorder at different length scales in a single network.
我们研究了具有与每条边相关联的随机权重(“无序”)的随机图中最优路径长度的分布。对于每条边(i),我们关联一个权重(\tau(i)=\exp(a r(i))),其中(r(i))是从(0)到(1)的均匀分布中选取的随机数,参数(a)控制无序的强度。我们通过类比最优路径的平均长度,提出最优路径长度的分布具有一种通用形式,该形式由表达式((1/p(c))(l(\infty)/a))控制,其中(l(\infty))是强无序((a\to\infty))时的最优路径长度,(p(c))是渗流阈值。这种关系得到了厄多斯 - 雷尼随机图和无标度随机图的数值模拟的支持。我们通过明确展示单个网络在不同长度尺度下从强无序到弱无序的转变来解释这一现象。