Bashan Amir, Parshani Roni, Havlin Shlomo
Department of Physics, Bar-Ilan University, Ramat Gan, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051127. doi: 10.1103/PhysRevE.83.051127. Epub 2011 May 20.
Networks composed from both connectivity and dependency links were found to be more vulnerable compared to classical networks with only connectivity links. Their percolation transition is usually of a first order compared to the second-order transition found in classical networks. We analytically analyze the effect of different distributions of dependencies links on the robustness of networks. For a random Erdös-Rényi (ER) network with average degree k that is divided into dependency clusters of size s, the fraction of nodes that belong to the giant component P(∞) is given by P(∞)=p(s-1)1-exp(-kpP(∞)), where 1-p is the initial fraction of removed nodes. Our general result coincides with the known Erdös-Rényi equation for random networks for s=1. For networks with Poissonian distribution of dependency links we find that P(∞) is given by P(∞)=f(k,p)(P(∞))e(([s]-1)[pf(k,p)(P(∞))-1]), where f(k,p)(P(∞))≡1-exp(-kpP(∞)) and [s] is the mean value of the size of dependency clusters. For networks with Gaussian distribution of dependency links we show how the average and width of the distribution affect the robustness of the networks.
与仅具有连接性链接的经典网络相比,由连接性和依赖性链接组成的网络被发现更易受攻击。与经典网络中发现的二阶转变相比,它们的渗流转变通常是一阶的。我们分析了依赖性链接的不同分布对网络鲁棒性的影响。对于平均度为k且被划分为大小为s的依赖性簇的随机厄多斯 - 雷尼(ER)网络,属于巨型组件的节点比例P(∞)由P(∞)=p(s - 1)1 - exp(-kpP(∞))给出,其中1 - p是初始被移除节点的比例。当s = 1时,我们的一般结果与随机网络的已知厄多斯 - 雷尼方程一致。对于具有泊松分布依赖性链接的网络,我们发现P(∞)由P(∞)=f(k,p)(P(∞))e(([s] - 1)[pf(k,p)(P(∞)) - 1])给出,其中f(k,p)(P(∞))≡1 - exp(-kpP(∞))且[s]是依赖性簇大小的平均值。对于具有高斯分布依赖性链接的网络,我们展示了分布的平均值和宽度如何影响网络的鲁棒性。