Suppr超能文献

乳腺病理学本体中语义相似性的计算,以协助观察者间达成共识。

Computation of semantic similarity within an ontology of breast pathology to assist inter-observer consensus.

作者信息

Steichen Olivier, Daniel-Le Bozec Christel, Thieu Maxime, Zapletal Eric, Jaulent Marie-Christine

机构信息

INSERM U729, F-75006, Paris, France.

出版信息

Comput Biol Med. 2006 Jul-Aug;36(7-8):768-88. doi: 10.1016/j.compbiomed.2005.04.014. Epub 2005 Sep 27.

Abstract

Computer-assisted consensus in medical imaging involves automatic comparison of morphological abnormalities observed by physicians in images. We built an ontology of morphological abnormalities in breast pathology to assist inter-observer consensus. Concepts of morphological abnormalities extracted from existing terminologies, published grading systems and medical reports were organized in an taxonomic hierarchy and furthermore linked by the relation "is a diagnostic criterion of" according to diagnostic meaning. We implemented position-based, content-based and mixed semantic similarity measures between concepts in this ontology and compared the results with experts' judgment. The position-based similarity measure using both taxonomic and non-taxonomic relations performed as well as the other measures and was used for automatic comparison of morphological abnormalities within the IDEM computer-assisted consensus platform.

摘要

医学影像中的计算机辅助共识涉及医生在图像中观察到的形态异常的自动比较。我们构建了一个乳腺病理学形态异常本体,以协助观察者之间达成共识。从现有术语、已发表的分级系统和医学报告中提取的形态异常概念被组织成一个分类层次结构,并根据诊断意义通过“是……的诊断标准”关系进一步链接。我们在这个本体中的概念之间实现了基于位置、基于内容和混合语义相似性度量,并将结果与专家判断进行了比较。使用分类和非分类关系的基于位置的相似性度量与其他度量表现相当,并用于在IDEM计算机辅助共识平台内对形态异常进行自动比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验