Suppr超能文献

与基因扩增-去扩增过程和细胞增殖相关的半群的混沌行为。

Chaotic behavior of semigroups related to the process of gene amplification-deamplification with cell proliferation.

作者信息

Banasiak Jacek, Lachowicz Mirosław, Moszyński Marcin

机构信息

School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa.

出版信息

Math Biosci. 2007 Apr;206(2):200-15. doi: 10.1016/j.mbs.2005.08.004. Epub 2005 Sep 30.

Abstract

In the last few years there has been a renewed interest in infinite systems of differential equations, similar to the classical birth-and-death system of population dynamics, due to their rôle in modelling the evolution of drug resistance in cancer cells. In [J. Banasiak, M. Lachowicz, Topological chaos for birth-and-death models with proliferation, Math. Models Methods Appl. Sci. 12 (6) (2002) 755] such systems were shown to generate a chaotic dynamics under, however, very restrictive assumptions on the growth of coefficients. In this paper, using recently developed concept of subspace chaos [J. Banasiak, M. Moszyński, A generalization of Desch-Schappacher-Webb criteria for topological chaos with applications, Discrete Contin. Dyn. Syst. - A 12 (5) (2005) 959], we show that for a linear growth of the coefficients, which are more acceptable from biological point of view, the dynamics of these systems is chaotic in some subspaces of the original state space.

摘要

在过去几年中,人们对微分方程的无穷系统重新产生了兴趣,这类似于种群动态学中的经典生死系统,因为它们在模拟癌细胞耐药性的演变中发挥了作用。在[J. 巴纳西亚克,M. 拉乔维茨,具有增殖的生死模型的拓扑混沌,《数学模型与应用科学方法》12 (6) (2002) 755]中,这类系统在系数增长的非常严格的假设下被证明会产生混沌动力学。在本文中,我们使用最近发展的子空间混沌概念[J. 巴纳西亚克,M. 莫辛斯基,具有应用的拓扑混沌的德施 - 沙帕彻 - 韦伯准则的推广,《离散与连续动力系统 - A》12 (5) (2005) 959],表明从生物学角度来看更可接受的系数线性增长情况下,这些系统的动力学在原始状态空间的某些子空间中是混沌的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验