Nomura Kaoru, Ferrat Gilles, Nakajima Terumi, Darbon Herve, Iwashita Takashi, Corzo Gerardo
Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan.
Biophys J. 2005 Dec;89(6):4067-80. doi: 10.1529/biophysj.105.070292. Epub 2005 Sep 30.
The membrane disruption mechanism of pandinin 1 (pin1), an antimicrobial peptide isolated from the venom of the African scorpion, was studied using 31P, 13C, 1H solid-state and multidimensional solution-state NMR spectroscopy. A high-resolution NMR solution structure of pin1 showed that the two distinct alpha-helical regions move around the central hinge region, which contains Pro19. 31P NMR spectra of lipid membrane in the presence of pin1, at various temperatures, showed that pin1 induces various lipid phase behaviors depending on the acyl chain length and charge of phospholipids. Notably, it was found that pin1 induced formation of the cubic phase in shorter lipid membranes above Tm. Further, the 13C NMR spectra of pin1 labeled at Leu28 under magic angle spinning (MAS) indicated that the motion of pin1 bound to the lipid bilayer was very slow, with a correlation time of the order of 10(-3) s. 31P NMR spectra of dispersions of four saturated phosphatidyl-cholines in the presence of three types of pin1 derivatives, [W4A, W6A, W15A]-pin1, pin1(1-18), and pin1(20-44), at various temperatures demonstrated that all three pin1 derivatives have a reduced ability to trigger the cubic phase. 13C chemical shift values for pin1(1-18) labeled at Val3, Ala10, or Ala11 under static or slow MAS conditions indicate that pin1(1-18) rapidly rotates around the average helical axis, and the helical rods are inclined at approximately 30 degrees to the lipid long axis. 13C chemical shift values for pin1(20-44) labeled at Gly25, Leu28, or Ala31 under static conditions indicate that pin1(20-44) may be isotropically tumbling. 1H MAS chemical shift measurements suggest that pin1 is located at the membrane-water interface approximately parallel to the bilayer surface. Solid-state NMR results correlated well with the observed biological activity of pin1 in red blood cells and bacteria.
利用31P、13C、1H固态和多维溶液态核磁共振波谱研究了从非洲蝎子毒液中分离出的抗菌肽潘迪宁1(pin1)的膜破坏机制。pin1的高分辨率核磁共振溶液结构表明,两个不同的α螺旋区域围绕包含Pro19的中央铰链区域移动。在不同温度下,存在pin1时脂质膜的31P核磁共振谱表明,pin1根据磷脂的酰基链长度和电荷诱导各种脂质相行为。值得注意的是,发现在高于Tm的较短脂质膜中pin1诱导立方相的形成。此外,在魔角旋转(MAS)下标记Leu28的pin1的13C核磁共振谱表明,与脂质双层结合的pin1的运动非常缓慢,相关时间约为10(-3)s。在不同温度下,四种饱和磷脂酰胆碱分散体在三种pin1衍生物[W4A、W6A、W15A]-pin1、pin1(1-18)和pin1(20-44)存在下的31P核磁共振谱表明,所有三种pin1衍生物触发立方相的能力均降低。在静态或慢速MAS条件下标记Val3、Ala10或Ala11的pin1(1-18)的13C化学位移值表明,pin1(1-18)围绕平均螺旋轴快速旋转,螺旋杆与脂质长轴倾斜约30度。在静态条件下标记Gly25、Leu28或Ala31的pin1(20-44)的13C化学位移值表明,pin1(20-44)可能进行各向同性翻滚。1H MAS化学位移测量表明,pin1位于膜-水界面,大致平行于双层表面。固态核磁共振结果与在红细胞和细菌中观察到的pin1的生物活性密切相关。