Suppr超能文献

分析连接微流体通道的纳米毛细管阵列膜上的pH梯度。

Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.

作者信息

Fa Keqing, Tulock Joseph J, Sweedler Jonathan V, Bohn Paul W

机构信息

Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.

出版信息

J Am Chem Soc. 2005 Oct 12;127(40):13928-33. doi: 10.1021/ja052708p.

Abstract

Nanocapillary array membranes (NCAMs), comprised of thin (d approximately 5-10 microm) nuclear track-etched polycarbonate sheets containing approximately 10(8) cm(-2) nearly parallel nanometer-diameter capillaries, may act to gate fluid transport between microfluidic channels to effect, for example, sample collection. There is interest in H+-transport across these NCAMs because there is significant practical interest in being able to process analyte-containing samples under different pH conditions in adjacent layers of an integrated microfluidic circuit and because protons, with their inherently high mobility, present a challenge in separating microfluidic environments with different properties. To evaluate the capability of NCAMs to support pH gradients, the proton transport properties of NCAMs were studied using laser scanning confocal fluorescence microscopy (LSCFM). Spatiotemporal maps of [H+] in microfluidic channels adjacent to the NCAMs yield information regarding diffusive and electrokinetic transport of protons. The NCAMs studied here are characterized by a positive zeta potential, zeta > 0, so at small nanocapillary diameters, the overlap of electrical double layers associated with opposite walls of the nanocapillary establish an energy barrier for either diffusion or electrokinetic transport of cations through the nanometer-diameter capillaries due to the positive charge on the nanocapillary surface. Proton transfer through an NCAM into microchannels is reduced for pore diameters, d < or = 50 nm and ionic strengths I < or = 50 mM, while for large pore diameters or solution ionic strengths, the incomplete overlap of electric double layer allows more facile ionic transfer across the membranes. These results establish the operating conditions for the development of multilevel integrated nanofluidic/microfluidic architectures which can support multidimensional chemical analysis of mass-limited samples requiring sequential operations to be implemented at different pH values.

摘要

纳米毛细管阵列膜(NCAMs)由薄的(厚度约为5 - 10微米)核径迹蚀刻聚碳酸酯片组成,该片包含约10⁸ cm⁻²的近乎平行的纳米直径毛细管,可用于控制微流体通道之间的流体传输,例如实现样品采集。人们对质子通过这些NCAMs的传输感兴趣,这是因为能够在集成微流体电路的相邻层中不同pH条件下处理含分析物的样品具有重大实际意义,而且质子具有极高的固有迁移率,这对分离具有不同性质的微流体环境构成了挑战。为了评估NCAMs支持pH梯度的能力,使用激光扫描共聚焦荧光显微镜(LSCFM)研究了NCAMs的质子传输特性。与NCAMs相邻的微流体通道中[H⁺]的时空图提供了有关质子扩散和电动传输的信息。这里研究的NCAMs的特征是具有正的zeta电位,zeta > 0,因此在纳米毛细管直径较小时,与纳米毛细管相对壁相关的双电层重叠为阳离子通过纳米直径毛细管的扩散或电动传输建立了能量屏障,这是由于纳米毛细管表面带正电荷。对于孔径d ≤ 50 nm且离子强度I ≤ 50 mM,质子通过NCAM进入微通道的传输会减少,而对于大孔径或溶液离子强度,双电层的不完全重叠使得离子更容易穿过膜。这些结果为开发多级集成纳米流体/微流体架构确定了操作条件,该架构可支持对需要在不同pH值下进行顺序操作的质量受限样品进行多维化学分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验