Lokuge Ishika, Wang Xuejun, Bohn Paul W
Department of Chemistry, Beckman Institute for Advanced Science and Technology and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
Langmuir. 2007 Jan 2;23(1):305-11. doi: 10.1021/la060813m.
We report actively controlled transport that is thermally switchable and size-selective in a nanocapillary array membrane (NCAM) prepared by grafting poly(N-isopropylacrylamide) (PNIPAAm) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane. A smooth Au layer on the membrane surface, which is key to obtaining a uniform polymer film, was prepared by thermal evaporation of approximately 50 nm Au on both exterior surfaces. After evaporation, the inner diameter of the pore is reduced slightly, but the NCAM retains a narrow pore size distribution. PNIPPAm brushes with 10-30 nm (dry film) thickness were grafted onto the Au surface through surface-initiated atom transfer radical polymerization (ATRP) using a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. Molecular transport through the PNIPAAm polymer brush-modified NCAMs was investigated by real-time fluorescence measurements using fluorescein isothiocyanate (FITC)-labeled dextrans ranging from 4.4 to 282 kDa in membranes with variable initial pore diameters (80, 100, and 200 nm) and different PNIPAAm thicknesses. Manipulating the temperature of the NCAM through the PNIPAAm lower critical solution temperature (LCST) causes large, size-dependent changes in the transport rates. Over specific ranges of probe size, transport is completely blocked below the LCST but strongly allowed above the LCST. The combination of the highly uniform PNIPAAm brush and the monodisperse pore size distribution is critical in producing highly reproducible switching behavior. Furthermore, the reversible nature of the switching raises the possibility of using them as actively controlled filtration devices.
我们报道了一种在通过将聚(N-异丙基丙烯酰胺)(PNIPAAm)刷接枝到金涂层聚碳酸酯径迹蚀刻膜外表面制备的纳米毛细管阵列膜(NCAM)中实现的热可切换且尺寸选择性的主动控制传输。通过在两个外表面热蒸发约50 nm金制备的膜表面光滑金层,是获得均匀聚合物膜的关键。蒸发后,孔的内径略有减小,但NCAM保留了狭窄的孔径分布。使用二硫化物引发剂(BrC(CH3)2COO(CH2)11S)2,通过表面引发的原子转移自由基聚合(ATRP)将厚度为10 - 30 nm(干膜)的PNIPPAm刷接枝到金表面。通过使用异硫氰酸荧光素(FITC)标记的分子量范围为4.4至282 kDa的葡聚糖,在具有可变初始孔径(80、100和200 nm)和不同PNIPAAm厚度的膜中进行实时荧光测量,研究了通过PNIPAAm聚合物刷修饰的NCAMs的分子传输。通过PNIPAAm的低临界溶液温度(LCST)操纵NCAM的温度会导致传输速率发生与尺寸相关的大幅变化。在特定的探针尺寸范围内,低于LCST时传输完全受阻,但高于LCST时则强烈允许传输。高度均匀的PNIPAAm刷和单分散孔径分布的结合对于产生高度可重复的切换行为至关重要。此外,切换的可逆性质增加了将它们用作主动控制过滤装置的可能性。