Gilks Walter R, Tom Brian D M, Brazma Alvis
MRC Biostatistics Unit, Cambridge, UK.
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii137-43. doi: 10.1093/bioinformatics/bti1123.
It is widely acknowledged that microarray data are subject to high noise levels and results are often platform dependent. Therefore, microarray experiments should be replicated several times and in several laboratories before the results can be relied upon. To make the best use of such extensive datasets, methods for microarray data fusion are required. Ideally, the fused data should distil important aspects of the data while suppressing unwanted sources of variation and be amenable to further informal and formal methods of analysis. Also, the variability in the quality of experimentation should be taken into account.
We present such an approach to data fusion, based on multivariate regression. We apply our methodology to data from a previous study on cell-cycle control in Schizosaccharomyces pombe.
The algorithm implemented in R is freely available from the authors on request.
人们普遍认为,微阵列数据存在高噪声水平,且结果往往依赖于平台。因此,在结果可靠之前,微阵列实验应在多个实验室重复进行多次。为了充分利用如此庞大的数据集,需要微阵列数据融合方法。理想情况下,融合后的数据应提炼出数据的重要方面,同时抑制不必要的变异来源,并便于进一步进行非正式和正式的分析方法。此外,还应考虑实验质量的变异性。
我们提出了一种基于多元回归的数据融合方法。我们将我们的方法应用于先前关于粟酒裂殖酵母细胞周期控制的研究数据。
作者可应要求免费提供用R实现的算法。