Suppr超能文献

使用五代芯片上的6926个实验对Affymetrix数据标准化方法进行比较。

Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations.

作者信息

Autio Reija, Kilpinen Sami, Saarela Matti, Kallioniemi Olli, Hautaniemi Sampsa, Astola Jaakko

机构信息

Department of Signal Processing, Tampere University of Technology, Tampere, Finland.

出版信息

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S24. doi: 10.1186/1471-2105-10-S1-S24.

Abstract

BACKGROUND

Gene expression microarray technologies are widely used across most areas of biological and medical research. Comparing and integrating microarray data from different experiments would be very useful, but is currently very challenging due to the experimental and hybridization conditions, as well as data preprocessing and normalization methods. Furthermore, even in the case of the widely-used, industry-standard Affymetrix oligonucleotide microarrays, the various array generations have different probe sets representing different genes, hindering the data integration.

RESULTS

In this study our objective is to find systematic approaches to normalize the data emerging from different Affymetrix array generations and from different laboratories. We compare and assess the accuracy of five normalization methods for Affymetrix gene expression data using 6,926 Affymetrix experiments from five array generations. The methods that we compare include 1) standardization, 2) housekeeping gene based normalization, 3) equalized quantile normalization, 4) Weibull distribution based normalization and 5) array generation based gene centering. Our results indicate that the best results are achieved when the data is normalized first within a sample and then between-samples with Array Generation based gene Centering (AGC) normalization.

CONCLUSION

We conclude that with the AGC method integrating different Affymetrix datasets results in values that are significantly more comparable across the array generations than in the cases where no array generation based normalization is used. The AGC method was found to be the best method for normalizing the data from several different array generations, and achieve comparable gene values across thousands of samples.

摘要

背景

基因表达微阵列技术广泛应用于生物和医学研究的大多数领域。比较和整合来自不同实验的微阵列数据将非常有用,但由于实验和杂交条件以及数据预处理和标准化方法,目前这极具挑战性。此外,即使在广泛使用的行业标准Affymetrix寡核苷酸微阵列的情况下,不同的阵列世代有不同的代表不同基因的探针集,这阻碍了数据整合。

结果

在本研究中,我们的目标是找到系统的方法来标准化来自不同Affymetrix阵列世代和不同实验室的数据。我们使用来自五个阵列世代的6926个Affymetrix实验,比较和评估了五种Affymetrix基因表达数据标准化方法的准确性。我们比较的方法包括:1)标准化;2)基于管家基因的标准化;3)均衡分位数标准化;4)基于威布尔分布的标准化;5)基于阵列世代的基因中心化。我们的结果表明,当数据首先在样本内进行标准化,然后使用基于阵列世代的基因中心化(AGC)标准化在样本间进行标准化时,能取得最佳结果。

结论

我们得出结论,使用AGC方法整合不同的Affymetrix数据集所得到的值,在不同阵列世代之间的可比性明显高于未使用基于阵列世代的标准化的情况。AGC方法被发现是标准化来自几个不同阵列世代的数据的最佳方法,并且能在数千个样本中实现可比的基因值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0d/2648747/4d5ac6e6716a/1471-2105-10-S1-S24-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验