Leyfer Dmitriy, Weng Zhiping
Bioinformatics Program, Boston University, Boston, MA 02215, USA.
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii197-203. doi: 10.1093/bioinformatics/bti1131.
A holistic approach to the study of cellular processes is identifying both gene-expression changes and regulatory elements promoting such changes. Cellular regulatory processes can be viewed as transcriptional modules (TMs), groups of coexpressed genes regulated by groups of transcription factors (TFs). We set out to devise a method that would identify TMs while avoiding arbitrary thresholds on TM sizes and number.
Assuming that gene expression is determined by TFs that bind to the gene's promoter, clustering of genes based on TF binding sites (cis-elements) should create gene groups similar to those obtained by gene expression clustering. Intersections between the expression and cis-element-based gene clusters reveal TMs. Statistical significance assigned to each TM allows identification of regulatory units of any size.
Our method correctly identifies the number and sizes of TMs on simulated datasets. We demonstrate that yeast experimental TMs are biologically relevant by comparing them with MIPS and GO categories. Our modules are in statistically significant agreement with TMs from other research groups. This work suggests that there is no preferential division of biological processes into regulatory units; each degree of partitioning exhibits a slice of biological network revealing hierarchical modular organization of transcriptional regulation.
研究细胞过程的整体方法是识别基因表达变化以及促进此类变化的调控元件。细胞调控过程可被视为转录模块(TMs),即由转录因子(TFs)组调控的共表达基因组。我们着手设计一种方法,该方法能够识别转录模块,同时避免对转录模块大小和数量设置任意阈值。
假设基因表达由与基因启动子结合的转录因子决定,基于转录因子结合位点(顺式元件)对基因进行聚类应能创建与通过基因表达聚类获得的基因组相似的基因组。基于表达和基于顺式元件的基因簇之间的交集揭示了转录模块。赋予每个转录模块的统计学显著性允许识别任何大小的调控单元。
我们的方法在模拟数据集上正确识别了转录模块的数量和大小。通过将酵母实验性转录模块与MIPS和GO类别进行比较,我们证明了它们具有生物学相关性。我们的模块与其他研究小组的转录模块在统计学上具有显著一致性。这项工作表明,生物过程没有优先划分为调控单元的方式;每个划分程度都展现了生物网络的一部分,揭示了转录调控的层次模块化组织。