Suppr超能文献

Enthalpy distribution functions for the unwinding of a short DNA duplex.

作者信息

Poland Douglas

机构信息

Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biopolymers. 2006 Feb 5;81(2):127-35. doi: 10.1002/bip.20387.

Abstract

In this article we use the published heat capacity data of Dragan et al. (J Mol Biol 2003, 327, 293-411) for a short DNA duplex to calculate the enthalpy probability distribution for this species as a function of temperature. Our approach is based on a procedure that we developed (Poland, D. J Chem Phys 2000, 112, 6554) whereby one obtains moments of the enthalpy distribution from the temperature dependence of the heat capacity. One then uses the maximum-entropy method to construct the enthalpy probability distribution from the set of enthalpy moments. For the DNA duplex treated here the heat capacity goes through a maximum as a function of temperature reflecting the unwinding of the duplex structure. In the neighborhood of the heat capacity maximum, the enthalpy distribution functions show a clear bimodal structure, indicating the coexistence of two distinct states, the duplex and the single-strand state. The probabilities of theses two states can be estimated from the enthalpy distribution functions and can be used to calculate the temperature dependence of the equilibrium constant for the unwinding of the DNA duplex. This example illustrates that the temperature dependence of the heat capacity can be used to give a detailed picture of conformational transitions in biological macromolecules. In particular, the structure of the enthalpy distribution in this case allows one to see the temperature evolution of the two-state distribution in detail.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验