Suppr超能文献

通过移除法对传染性病原体的R0进行估计和推断。

Estimation and inference of R0 of an infectious pathogen by a removal method.

作者信息

Ferrari Matthew J, Bjørnstad Ottar N, Dobson Andrew P

机构信息

IGDP in Ecology, 501 ASI Building, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Math Biosci. 2005 Nov;198(1):14-26. doi: 10.1016/j.mbs.2005.08.002. Epub 2005 Oct 7.

Abstract

The basic reproductive ratio, R0, is a central quantity in the investigation and management of infectious pathogens. The standard model for describing stochastic epidemics is the continuous time epidemic birth-and-death process. The incidence data used to fit this model tend to be collected in discrete units (days, weeks, etc.), which makes model fitting, and estimation of R0 difficult. Discrete time epidemic models better match the time scale of data collection but make simplistic assumptions about the stochastic epidemic process. By investigating the nature of the assumptions of a discrete time epidemic model, we derive a bias corrected maximum likelihood estimate of R0 based on the chain binomial model. The resulting 'removal' estimators provide estimates of R0 and the initial susceptible population size from time series of infectious case counts. We illustrate the performance of the estimators on both simulated data and real epidemics. Lastly, we discuss methods to address data collected with observation error.

摘要

基本繁殖数R0是传染病原体调查和管理中的核心指标。描述随机流行病的标准模型是连续时间流行病生死过程。用于拟合该模型的发病率数据往往是以离散单位(天、周等)收集的,这使得模型拟合以及R0的估计变得困难。离散时间流行病模型更符合数据收集的时间尺度,但对随机流行病过程做了过于简单的假设。通过研究离散时间流行病模型假设的本质,我们基于链二项式模型推导出了R0的偏差校正最大似然估计。由此得到的“去除”估计量可根据感染病例数的时间序列估计R0和初始易感人群规模。我们在模拟数据和实际流行病中展示了这些估计量的性能。最后,我们讨论了处理存在观测误差的数据的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验