Suppr超能文献

一种分析多个时间序列数据的框架:以天蓝色链霉菌为例的案例研究。

A framework to analyze multiple time series data: a case study with Streptomyces coelicolor.

作者信息

Mehra Sarika, Lian Wei, Jayapal Karthik P, Charaniya Salim P, Sherman David H, Hu Wei-Shou

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA.

出版信息

J Ind Microbiol Biotechnol. 2006 Feb;33(2):159-72. doi: 10.1007/s10295-005-0034-7. Epub 2005 Oct 11.

Abstract

Transcriptional regulation in differentiating microorganisms is highly dynamic involving multiple and interwinding circuits consisted of many regulatory genes. Elucidation of these networks may provide the key to harness the full capacity of many organisms that produce natural products. A powerful tool evolved in the past decade is global transcriptional study of mutants in which one or more key regulatory genes of interest have been deleted. To study regulatory mutants of Streptomyces coelicolor, we developed a framework of systematic analysis of gene expression dynamics. Instead of pair-wise comparison of samples in different combinations, genomic DNA was used as a common reference for all samples in microarray assays, thus, enabling direct comparison of gene transcription dynamics across different isogenic mutants. As growth and various differentiation events may unfold at different rates in different mutants, the global transcription profiles of each mutant were first aligned computationally to those of the wild type, with respect to the corresponding growth and differentiation stages, prior to identification of kinetically differentially expressed genes. The genome scale transcriptome data from wild type and a DeltaabsA1 mutant of Streptomyces coelicolor were analyzed within this framework, and the regulatory elements affected by the gene knockout were identified. This methodology should find general applications in the analysis of other mutants in our repertoire and in other biological systems.

摘要

分化中的微生物的转录调控是高度动态的,涉及由许多调控基因组成的多个相互缠绕的回路。阐明这些网络可能是充分利用许多生产天然产物的生物体全部能力的关键。在过去十年中发展起来的一个强大工具是对已删除一个或多个感兴趣的关键调控基因的突变体进行全局转录研究。为了研究天蓝色链霉菌的调控突变体,我们开发了一个基因表达动态系统分析框架。在微阵列分析中,不是对不同组合的样本进行两两比较,而是将基因组DNA用作所有样本的共同参考,从而能够直接比较不同同基因突变体之间的基因转录动态。由于生长和各种分化事件在不同突变体中可能以不同速率展开,在鉴定动力学差异表达基因之前,首先将每个突变体的全局转录谱相对于相应的生长和分化阶段在计算上与野生型的转录谱进行比对。在此框架内分析了天蓝色链霉菌野生型和ΔabsA1突变体的基因组规模转录组数据,并鉴定了受基因敲除影响的调控元件。这种方法应该在我们的文库中的其他突变体分析以及其他生物系统中找到普遍应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验