Erbas Bircan, Hyndman Rob J, Gertig Dorota M
Centre for Genetic Epidemiology, The University of Melbourne, Level 2, 723 Swanston Street, Carlton, Vic. 3053, Australia.
Stat Med. 2007 Jan 30;26(2):458-70. doi: 10.1002/sim.2306.
Accurate estimates of future age-specific incidence and mortality are critical for allocation of resources to breast cancer control programmes and evaluation of screening programmes. The purpose of this study is to apply functional data analysis techniques to model age-specific breast cancer mortality time trends, and forecast entire age-specific mortality functions using a state-space approach. We use annual unadjusted breast cancer mortality rates in Australia, from 1921 to 2001 in 5 year age groups (45 to 85+). We use functional data analysis techniques where mortality and incidence are modelled as curves with age as a functional covariate varying by time. Data are smoothed using non-parametric smoothing methods then decomposed (using principal components analysis) to estimate basis functions that represent the functional curve. Period effects from the fitted coefficients are forecast then multiplied by the basis functions, resulting in a forecast mortality curve with prediction intervals. To forecast, we adopt a state-space approach and an automatic modelling framework for selecting among exponential smoothing methods.Overall, breast cancer mortality rates in Australia remained relatively stable from 1960 to the late 1990s, but have declined over the last few years. A set of four basis functions minimized the mean integrated squared forecasting error and account for 99.3 per cent of variation around the mean mortality curve. Twenty year forecasts suggest a continuing decline, but at a slower rate, and stabilizing beyond 2010. Forecasts show a decline in all age groups with the greatest decline in older women. The proposed methods have the potential to incorporate important covariates such as hormone replacement therapy and interventions to represent mammographic screening. This would be particularly useful for evaluating the impact of screening on mortality and incidence from breast cancer.
准确估计未来特定年龄组的发病率和死亡率对于乳腺癌控制项目的资源分配以及筛查项目的评估至关重要。本研究的目的是应用功能数据分析技术来模拟特定年龄组乳腺癌死亡率的时间趋势,并使用状态空间方法预测整个特定年龄组的死亡率函数。我们使用澳大利亚1921年至2001年按5岁年龄组(45岁至85岁以上)划分的未经调整的年度乳腺癌死亡率。我们采用功能数据分析技术,将死亡率和发病率建模为以年龄为功能协变量且随时间变化的曲线。数据使用非参数平滑方法进行平滑处理,然后进行分解(使用主成分分析)以估计代表功能曲线的基函数。对拟合系数的周期效应进行预测,然后乘以基函数,从而得到带有预测区间的预测死亡率曲线。为了进行预测,我们采用状态空间方法和一个自动建模框架,以便在指数平滑方法中进行选择。总体而言,澳大利亚的乳腺癌死亡率在1960年至20世纪90年代后期相对稳定,但在过去几年中有所下降。一组四个基函数使平均积分平方预测误差最小化,并解释了平均死亡率曲线周围99.3%的变异。20年的预测表明死亡率将持续下降,但速度会放缓,并在2010年以后趋于稳定。预测显示所有年龄组的死亡率都将下降,老年女性下降幅度最大。所提出的方法有可能纳入重要的协变量,如激素替代疗法和代表乳房X光筛查的干预措施。这对于评估筛查对乳腺癌死亡率和发病率的影响将特别有用。