Older Christina M, McDonald Robert, Stryker Jeffrey M
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
J Am Chem Soc. 2005 Oct 19;127(41):14202-3. doi: 10.1021/ja0556023.
Cationic (eta6-hexamethylbenzene)ruthenium(II) mediates the [3 + 2 + 2] cycloaddition of allyl and alkyne ligands, leading to the unexpected isolation of eta1,eta4-cycloheptadienyl complexes, an unprecedented coordination mode for transition metal complexes of simple organic rings. The nonconjugated, eta1,eta4-coordinated complex is obtained as the kinetic reaction product from treatment of the unsubstituted allyl complex with excess ethyne; this complex rearranges slowly at 80 degrees C to the thermodynamically more stable conjugated eta5-cycloheptadienyl isomer. The eta1,eta4-coordinated isomer is fluxional at room temperature, undergoing rapid and reversible equilibration with a cycloheptatriene hydride intermediate via facile beta-hydride elimination/reinsertion. The reinsertion process is remarkably regioselective, returning the nonconjugated eta1,eta4-cycloheptadienyl isomer exclusively at room temperature. For reactions incorporating dimethylacetylene dicarboxylate (DMAD) as one or both of the alkyne components, eta1,eta4-coordination appears to be both kinetically and thermodynamically favored, despite undergoing equilibration among all possible eta1,eta4-cycloheptadienyl and cycloheptatriene hydride isomers prior to arriving at one observed eta1,eta4-isomer. For this series, no isomerization to eta5-coordination is observed even upon prolonged heating. In contrast, the cyclization incorporating both DMAD and phenylacetylene proceeds directly to the eta5-cycloheptadienyl isomer at or below room temperature, indicating that eta5-coordination remains energetically accessible to this system. The DMAD-based cyclization reactions produce structurally diverse minor byproducts, including both eta1,eta4-methanocyclohexadiene and acyclic eta3,eta2-heptadienyl isomers, which have been isolated and rigorously characterized. The unusual eta1,eta4-coordination of the seven-membered ring leads to unique new organic products upon oxidative demetalation by iodinolysis. Thus, reactions with excess iodine afford bridged tricyclic cyclopropane-containing lactones or substituted cycloheptatrienes in good but sometimes variable yields, depending on the substrate and specific reaction conditions. The ruthenium in these reactions is returned in high yield as the interesting cationic mu-triiodo pseudodimer of (eta6-hexamethylbenzene)ruthenium, which is obtained as a triiodide salt. This Ru(III) complex, along with several representative Ru(II) cyclization products, has been characterized in the solid state by X-ray crystallography.
阳离子(η6-六甲基苯)钌(II)介导烯丙基和炔烃配体的[3 + 2 + 2]环加成反应,意外地分离得到了η1,η4-环庚二烯基配合物,这是简单有机环过渡金属配合物前所未有的配位模式。未取代的烯丙基配合物与过量乙炔反应,得到动力学反应产物——非共轭的η1,η4-配位配合物;该配合物在80℃下缓慢重排为热力学更稳定的共轭η5-环庚二烯基异构体。η1,η4-配位异构体在室温下具有流动性,通过容易的β-氢消除/再插入过程与环庚三烯氢化物中间体快速且可逆地达到平衡。再插入过程具有显著的区域选择性,在室温下仅生成非共轭的η1,η4-环庚二烯基异构体。对于以二甲基乙炔二羧酸酯(DMAD)作为炔烃组分之一或两者的反应,尽管在得到一种观察到的η1,η4-异构体之前,所有可能的η1,η4-环庚二烯基和环庚三烯氢化物异构体之间会达到平衡,但η1,η4-配位在动力学和热力学上似乎都更有利。对于该系列反应,即使长时间加热也未观察到异构化为η5-配位的情况。相比之下,同时包含DMAD和苯乙炔的环化反应在室温或低于室温时直接生成η5-环庚二烯基异构体,这表明该体系在能量上仍可实现η5-配位。基于DMAD的环化反应产生结构多样的次要副产物,包括η1,η4-亚甲基环己二烯和无环的η3,η2-庚二烯基异构体,这些副产物已被分离并进行了严格表征。七元环异常的η1,η4-配位在通过碘解进行氧化脱金属时会产生独特的新型有机产物。因此,与过量碘反应可得到桥连的含三环环丙烷的内酯或取代的环庚三烯,产率良好,但有时会因底物和具体反应条件而有所不同。这些反应中的钌以高产率以有趣的(η6-六甲基苯)钌的阳离子μ-三碘假二聚体形式回收,该假二聚体以三碘化物盐的形式获得。这种Ru(III)配合物以及几种代表性的Ru(II)环化产物已通过X射线晶体学在固态下进行了表征。