Suppr超能文献

超越“3/4 幂定律”:动物种内和种间代谢率缩放的变化

Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals.

作者信息

Glazier Douglas S

机构信息

Department of Biology, Juniata College, Huntingdon, Pennsylvania 16652, USA.

出版信息

Biol Rev Camb Philos Soc. 2005 Nov;80(4):611-62. doi: 10.1017/S1464793105006834.

Abstract

In this review I show that the '3/4-power scaling law' of metabolic rate is not universal, either within or among animal species. Significant variation in the scaling of metabolic rate with body mass is described mainly for animals, but also for unicells and plants. Much of this variation, which can be related to taxonomic, physiological, and/or environmental differences, is not adequately explained by existing theoretical models, which are also reviewed. As a result, synthetic explanatory schemes based on multiple boundary constraints and on the scaling of multiple energy-using processes are advocated. It is also stressed that a complete understanding of metabolic scaling will require the identification of both proximate (functional) and ultimate (evolutionary) causes. Four major types of intraspecific metabolic scaling with body mass are recognized [based on the power function R=aMb, where R is respiration (metabolic) rate, a is a constant, M is body mass, and b is the scaling exponent]: Type I: linear, negatively allometric (b<1); Type II: linear, isometric (b=1); Type III: nonlinear, ontogenetic shift from isometric (b=1), or nearly isometric, to negatively allometric (b<1); and Type IV: nonlinear, ontogenetic shift from positively allometric (b>1) to one or two later phases of negative allometry (b<1). Ontogenetic changes in the metabolic intensity of four component processes (i.e. growth, reproduction, locomotion, and heat production) appear to be important in these different patterns of metabolic scaling. These changes may, in turn, be shaped by age (size)-specific patterns of mortality. In addition, major differences in interspecific metabolic scaling are described, especially with respect to mode of temperature regulation, body-size range, and activity level. A 'metabolic-level boundaries hypothesis' focusing on two major constraints (surface-area limits on resource/waste exchange processes and mass/volume limits on power production) can explain much, but not all of this variation. My analysis indicates that further empirical and theoretical work is needed to understand fully the physiological and ecological bases for the considerable variation in metabolic scaling that is observed both within and among species. Recommended approaches for doing this are discussed. I conclude that the scaling of metabolism is not the simple result of a physical law, but rather appears to be the more complex result of diverse adaptations evolved in the context of both physico-chemical and ecological constraints.

摘要

在这篇综述中,我指出代谢率的“3/4幂标度律”在动物物种内部或物种之间都不具有普遍性。代谢率随体重的标度存在显著变化,这主要体现在动物身上,但单细胞生物和植物也有这种情况。这种变化大多与分类学、生理学和/或环境差异有关,现有理论模型对此解释并不充分,本文也对这些模型进行了综述。因此,提倡基于多重边界约束和多种能量利用过程的标度建立综合解释方案。还强调了对代谢标度的全面理解需要确定其近因(功能)和远因(进化)。基于幂函数R = aM^b(其中R是呼吸(代谢)率,a是常数,M是体重,b是标度指数),识别出四种主要的种内代谢随体重的标度类型:I型:线性,负异速生长(b < 1);II型:线性,等速生长(b = 1);III型:非线性,个体发育过程中从等速生长(b = 1)或近似等速生长转变为负异速生长(b < 1);IV型:非线性,个体发育过程中从正异速生长(b > 1)转变为一或两个后期的负异速生长阶段(b < 1)。四个组成过程(即生长、繁殖、运动和产热)的代谢强度在个体发育过程中的变化,在这些不同的代谢标度模式中似乎很重要。这些变化反过来可能受特定年龄(大小)的死亡率模式影响。此外,还描述了种间代谢标度的主要差异,特别是在温度调节方式、体型范围和活动水平方面。一个关注两个主要限制因素(资源/废物交换过程的表面积限制和能量产生的质量/体积限制)的“代谢水平边界假说”可以解释其中很多,但并非全部这种变化。我的分析表明,需要进一步开展实证和理论研究,以充分理解在物种内部和物种之间观察到的代谢标度显著变化的生理和生态基础。文中讨论了进行这项研究的推荐方法。我的结论是,代谢的标度并非物理定律的简单结果,而似乎是在物理化学和生态约束背景下进化出的多种适应的更复杂结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验