Occhi Simona, Zambroni Desirée, Del Carro Ubaldo, Amadio Stefano, Sirkowski Erich E, Scherer Steven S, Campbell Kevin P, Moore Steven A, Chen Zulin-L, Strickland Sidney, Di Muzio Antonio, Uncini Antonino, Wrabetz Lawrence, Feltri M Laura
Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy.
J Neurosci. 2005 Oct 12;25(41):9418-27. doi: 10.1523/JNEUROSCI.2068-05.2005.
Nodes of Ranvier are specialized axonal domains, at which voltage-gated sodium channels cluster. How axons cluster molecules in discrete domains is mostly unknown. Both axons and glia probably provide constraining mechanisms that contribute to domain formation. Proper sodium channel clustering in peripheral nerves depends on contact from Schwann cell microvilli, where at least one molecule, gliomedin, binds the sodium channel complex and induces its clustering. Furthermore, mice lacking Schwann cell dystroglycan have aberrant microvilli and poorly clustered sodium channels. Dystroglycan could interact at the basal lamina or at the axonglial surface. Because dystroglycan is a laminin receptor, and laminin 2 mutations [merosin-deficient congenital muscular dystrophy (MDC1A)] cause reduced nerve conduction velocity, we asked whether laminins are involved. Here, we show that the composition of both laminins and the dystroglycan complex at nodes differs from that of internodes. Mice defective in laminin 2 have poorly formed microvilli and abnormal sodium clusters. These abnormalities are similar, albeit less severe, than those of mice lacking dystroglycan. However, mice lacking all Schwann cell laminins show severe nodal abnormalities, suggesting that other laminins compensate for the lack of laminin 2. Thus, although laminins are located at a distance from the axoglial junction, they are required for proper clustering of sodium channels. Laminins, through their specific nodal receptors and cytoskeletal linkages, may participate in the formation of mechanisms that constrain clusters at nodes. Finally, abnormal sodium channel clusters are present in a patient with MDC1A, providing a molecular basis for the reduced nerve conduction velocity in this disorder.
郎飞结是特化的轴突结构域,电压门控钠通道在此聚集。轴突如何在离散结构域中聚集分子大多仍不清楚。轴突和神经胶质细胞可能都提供了有助于结构域形成的限制机制。外周神经中钠通道的正确聚集依赖于施万细胞微绒毛的接触,至少有一种分子神经胶质蛋白结合钠通道复合物并诱导其聚集。此外,缺乏施万细胞肌营养不良聚糖的小鼠有异常的微绒毛和聚集不佳的钠通道。肌营养不良聚糖可在基膜或轴突-神经胶质表面相互作用。由于肌营养不良聚糖是层粘连蛋白受体,且层粘连蛋白2突变[缺乏merosin的先天性肌营养不良症(MDC1A)]会导致神经传导速度降低,我们探究层粘连蛋白是否参与其中。在此,我们表明郎飞结处层粘连蛋白和肌营养不良聚糖复合物的组成与结间段不同。层粘连蛋白2缺陷的小鼠微绒毛形成不良且钠簇异常。这些异常与缺乏肌营养不良聚糖的小鼠相似,尽管程度较轻。然而,缺乏所有施万细胞层粘连蛋白的小鼠表现出严重的郎飞结异常,表明其他层粘连蛋白可补偿层粘连蛋白2的缺失。因此,尽管层粘连蛋白位于距轴突-神经胶质连接较远的位置,但它们是钠通道正确聚集所必需的。层粘连蛋白通过其特定的郎飞结受体和细胞骨架连接,可能参与形成限制郎飞结处簇形成的机制。最后,一名MDC1A患者存在异常的钠通道簇,为该疾病中神经传导速度降低提供了分子基础。