Suppr超能文献

有丝分裂染色体的蛋白酶解诱导了与弹性模量降低以及对罕见切割限制酶的结构敏感性降低相关的渐进性和各向异性解聚。

Proteolysis of mitotic chromosomes induces gradual and anisotropic decondensation correlated with a reduction of elastic modulus and structural sensitivity to rarely cutting restriction enzymes.

作者信息

Pope Lisa H, Xiong Chee, Marko John F

机构信息

Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059, USA.

出版信息

Mol Biol Cell. 2006 Jan;17(1):104-13. doi: 10.1091/mbc.e05-04-0321. Epub 2005 Oct 12.

Abstract

The effect of nonspecific proteolysis on the structure of single isolated mitotic newt chromosomes was studied using chromosome elastic response as an assay. Exposure to either trypsin or proteinase K gradually decondensed and softened chromosomes but without entirely eliminating their elastic response. Analysis of chromosome morphology revealed anisotropic decondensation upon digestion, with length increasing more than width. Prolonged protease treatment resulted only in further swelling of the chromosome without complete dissolution. Mild trypsinization induced sensitivity of chromosome elasticity to five- and six-base-specific restriction enzymes. These results, combined with previous studies of effects of nucleases on mitotic chromosome structure, indicate that mild proteolysis gradually reduces the density of chromatin-constraining elements in the mitotic chromosome, providing evidence consistent with an anisotropically folded "chromatin network" model of mitotic chromosome architecture.

摘要

利用染色体弹性反应作为一种检测方法,研究了非特异性蛋白水解对单个分离的有丝分裂蝾螈染色体结构的影响。用胰蛋白酶或蛋白酶K处理会使染色体逐渐解聚并变软,但不会完全消除其弹性反应。对染色体形态的分析表明,消化时会发生各向异性解聚,长度增加比宽度更多。长时间的蛋白酶处理只会导致染色体进一步肿胀,而不会完全溶解。轻度胰蛋白酶处理会使染色体弹性对五碱基和六碱基特异性限制酶敏感。这些结果与之前关于核酸酶对有丝分裂染色体结构影响的研究相结合,表明轻度蛋白水解会逐渐降低有丝分裂染色体中染色质约束元件的密度,为与有丝分裂染色体结构的各向异性折叠“染色质网络”模型一致的证据提供了支持。

相似文献

2
Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15393-7. doi: 10.1073/pnas.232442599. Epub 2002 Nov 18.
4
Micromechanical studies of mitotic chromosomes.
Curr Top Dev Biol. 2003;55:75-141. doi: 10.1016/s0070-2153(03)01002-0.
5
Micromechanical studies of mitotic chromosomes.
J Muscle Res Cell Motil. 2002;23(5-6):409-31.
7
The bending rigidity of mitotic chromosomes.
Mol Biol Cell. 2002 Jun;13(6):2170-9. doi: 10.1091/mbc.01-08-0401.
8
Micromechanical studies of mitotic chromosomes.
Chromosome Res. 2008;16(3):469-97. doi: 10.1007/s10577-008-1233-7.
9
A physical model for the condensation and decondensation of eukaryotic chromosomes.
FEBS Lett. 2006 Jan 23;580(2):368-72. doi: 10.1016/j.febslet.2005.12.053. Epub 2005 Dec 27.

引用本文的文献

1
Cell cycle and age-related modulations of mouse chromosome stiffness.
Elife. 2025 Apr 14;13:RP97403. doi: 10.7554/eLife.97403.
2
Cell cycle and Age-Related Modulations of Mouse Chromosome Stiffness.
bioRxiv. 2025 Mar 10:2024.03.06.583771. doi: 10.1101/2024.03.06.583771.
3
Bridging condensins mediate compaction of mitotic chromosomes.
J Cell Biol. 2024 Jan 1;223(1). doi: 10.1083/jcb.202209113. Epub 2023 Nov 17.
4
Structural reorganization and relaxation dynamics of axially stressed chromosomes.
Biophys J. 2023 May 2;122(9):1633-1645. doi: 10.1016/j.bpj.2023.03.029. Epub 2023 Mar 22.
5
Direct observation of surface charge and stiffness of human metaphase chromosomes.
Nanoscale Adv. 2022 Dec 20;5(2):368-377. doi: 10.1039/d2na00620k. eCollection 2023 Jan 18.
6
Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold.
Chromosome Res. 2018 Dec;26(4):277-295. doi: 10.1007/s10577-018-9584-1. Epub 2018 Aug 24.
7
Novel insights into mitotic chromosome condensation.
F1000Res. 2016 Jul 25;5. doi: 10.12688/f1000research.8727.1. eCollection 2016.
8
Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines.
Chromosome Res. 2016 Sep;24(3):339-53. doi: 10.1007/s10577-016-9528-6. Epub 2016 May 5.
9
Chromosomes Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion Cycles.
Cell. 2015 May 21;161(5):1124-1137. doi: 10.1016/j.cell.2015.04.030.
10
Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.
Bioessays. 2015 Jul;37(7):755-66. doi: 10.1002/bies.201500020. Epub 2015 May 18.

本文引用的文献

2
SMC proteins and chromosome mechanics: from bacteria to humans.
Philos Trans R Soc Lond B Biol Sci. 2005 Mar 29;360(1455):507-14. doi: 10.1098/rstb.2004.1606.
3
Distinct functions of condensin I and II in mitotic chromosome assembly.
J Cell Sci. 2004 Dec 15;117(Pt 26):6435-45. doi: 10.1242/jcs.01604. Epub 2004 Nov 30.
4
Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16495-500. doi: 10.1073/pnas.0402766101. Epub 2004 Nov 15.
5
Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure.
J Cell Biol. 2004 Sep 13;166(6):775-85. doi: 10.1083/jcb.200406049. Epub 2004 Sep 7.
6
A mechanical basis for chromosome function.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12592-7. doi: 10.1073/pnas.0402724101. Epub 2004 Aug 6.
7
Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells.
Mol Biol Cell. 2004 Jul;15(7):3296-308. doi: 10.1091/mbc.e04-03-0242. Epub 2004 May 14.
10
Kinetics of deoxyribonuclease action on chromosomes.
Nature. 1963 Apr 6;198:36-8. doi: 10.1038/198036a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验