Suppr超能文献

凝聚素控制有丝分裂染色体的硬度和稳定性,而不形成结构上连续的支架。

Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold.

作者信息

Sun Mingxuan, Biggs Ronald, Hornick Jessica, Marko John F

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.

出版信息

Chromosome Res. 2018 Dec;26(4):277-295. doi: 10.1007/s10577-018-9584-1. Epub 2018 Aug 24.

Abstract

During cell division, chromosomes must be folded into their compact mitotic form to ensure their segregation. This process is thought to be largely controlled by the action of condensin SMC protein complexes on chromatin fibers. However, how condensins organize metaphase chromosomes is not understood. We have combined micromanipulation of single human mitotic chromosomes, sub-nanonewton force measurement, siRNA interference of condensin subunit expression, and fluorescence microscopy, to analyze the role of condensin in large-scale chromosome organization. Condensin depletion leads to a dramatic (~ 10-fold) reduction in chromosome elastic stiffness relative to the native, non-depleted case. We also find that prolonged metaphase stalling of cells leads to overloading of chromosomes with condensin, with abnormally high chromosome stiffness. These results demonstrate that condensin is a main element controlling the stiffness of mitotic chromosomes. Isolated, slightly stretched chromosomes display a discontinuous condensing staining pattern, suggesting that condensins organize mitotic chromosomes by forming isolated compaction centers that do not form a continuous scaffold.

摘要

在细胞分裂过程中,染色体必须折叠成紧密的有丝分裂形式以确保其分离。这个过程被认为在很大程度上受凝聚素SMC蛋白复合物对染色质纤维的作用控制。然而,凝聚素如何组织中期染色体尚不清楚。我们结合了对单个人类有丝分裂染色体的微操作、亚纳牛顿力测量、凝聚素亚基表达的siRNA干扰以及荧光显微镜,来分析凝聚素在大规模染色体组织中的作用。与天然的、未耗尽的情况相比,凝聚素耗尽导致染色体弹性刚度急剧下降(约10倍)。我们还发现,细胞中期的长时间停滞会导致染色体上凝聚素过载,染色体刚度异常高。这些结果表明,凝聚素是控制有丝分裂染色体刚度的主要因素。分离的、轻微拉伸的染色体显示出不连续的凝聚染色模式,这表明凝聚素通过形成不形成连续支架的孤立压缩中心来组织有丝分裂染色体。

相似文献

引用本文的文献

2
Mitotic genome folding.有丝分裂基因组折叠
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202504075. Epub 2025 Jun 10.
3
Bridging-mediated compaction of mitotic chromosomes.有丝分裂染色体的桥连介导压缩
Nucleus. 2025 Dec;16(1):2497765. doi: 10.1080/19491034.2025.2497765. Epub 2025 May 9.
9
Mechanobiology of the nucleus during the G2-M transition.有丝分裂期到 M 期转换过程中核的力学生物学。
Nucleus. 2024 Dec;15(1):2330947. doi: 10.1080/19491034.2024.2330947. Epub 2024 Mar 27.

本文引用的文献

2
Real-time imaging of DNA loop extrusion by condensin.凝缩蛋白介导的DNA环挤压的实时成像
Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.
3
A pathway for mitotic chromosome formation.有丝分裂染色体形成的一条途径。
Science. 2018 Feb 9;359(6376). doi: 10.1126/science.aao6135. Epub 2018 Jan 18.
7
Chromosome Compaction by Active Loop Extrusion.通过主动环挤压实现染色体压缩
Biophys J. 2016 May 24;110(10):2162-8. doi: 10.1016/j.bpj.2016.02.041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验