Capper Angela, Tibbetts Ian R, O'Neil Judith M, Shaw Glendon R
Smithsonian Marine Station, Fort Pierce, FL 34949, USA.
J Chem Ecol. 2005 Jul;31(7):1595-606. doi: 10.1007/s10886-005-5800-5.
Blooms of Lyngbya majuscula have been reported with increasing frequency and severity in the last decade in Moreton Bay, Australia. A number of grazers have been observed feeding upon this toxic cyanobacterium. Differences in sequestration of toxic compounds from L. majuscula were investigated in two anaspideans, Stylocheilus striatus, Bursatella leachii, and the cephalaspidean Diniatys dentifer. Species fed a monospecific diet of L. majuscula had different toxin distribution in their tissues and excretions. A high concentration of lyngbyatoxin-a was observed in the body of S. striatus (3.94 mg/kg(-1)) compared to bodily secretions (ink 0.12 mg/kg(-1); fecal matter 0.56 mg/kg(-1); eggs 0.05 mg/kg(-1)). In contrast, B. leachii secreted greater concentrations of lyngbyatoxin-a (ink 5.41 mg/kg(-1); fecal matter 6.71 mg/kg(-1)) than that stored in the body (2.24 mg/kg(-1)). The major internal repository of lyngbyatoxin-a and debromoaplysiatoxin was the digestive gland for both S. striatus (6.31 +/- 0.31 mg/kg(-1)) and B. leachii (156.39 +/- 46.92 mg/kg(-1)). D. dentifer showed high variability in the distribution of sequestered compounds. Lyngbyatoxin-a was detected in the digestive gland (3.56 +/- 3.56 mg/kg(-1)) but not in the head and foot, while debromoaplysiatoxin was detected in the head and foot (133.73 +/- 129.82 mg/kg(-1)) but not in the digestive gland. The concentrations of sequestered secondary metabolites in these animals did not correspond to the concentrations found in L. majuscula used as food for these experiments, suggesting it may have been from previous dietary exposure. Trophic transfer of debromoaplysiatoxin from L. majuscula into S. striatus is well established; however, a lack of knowledge exists for other grazers. The high levels of secondary metabolites observed in both the anaspidean and the cephalapsidean species suggest that these toxins may bioaccumulate through marine food chains.
在过去十年中,澳大利亚莫顿湾大型鞘丝藻水华的发生频率和严重程度不断增加。人们观察到一些食草动物以这种有毒蓝藻为食。研究了两种无盾目动物条纹海兔、李氏背肛海兔以及头盾目动物齿状迪尼亚海兔从大型鞘丝藻中摄取有毒化合物的差异。以大型鞘丝藻单一物种为食的物种,其组织和排泄物中的毒素分布有所不同。与身体分泌物(墨汁0.12毫克/千克;粪便0.56毫克/千克;卵0.05毫克/千克)相比,条纹海兔体内的lyngbyatoxin-a浓度较高(3.94毫克/千克)。相比之下,李氏背肛海兔分泌的lyngbyatoxin-a浓度(墨汁5.41毫克/千克;粪便6.71毫克/千克)高于其体内储存的浓度(2.24毫克/千克)。对于条纹海兔(6.31±0.31毫克/千克)和李氏背肛海兔(156.39±46.92毫克/千克)而言,lyngbyatoxin-a和脱溴海兔毒素的主要内部储存部位是消化腺。齿状迪尼亚海兔摄取的化合物分布具有高度变异性。在消化腺中检测到lyngbyatoxin-a(3.56±3.56毫克/千克),但在头部和足部未检测到;而在头部和足部检测到脱溴海兔毒素(133.73±129.82毫克/千克),但在消化腺中未检测到。这些动物摄取的次生代谢产物浓度与用作这些实验食物的大型鞘丝藻中的浓度不对应,这表明可能是先前饮食暴露所致。脱溴海兔毒素从大型鞘丝藻向条纹海兔的营养转移已得到充分证实;然而,对于其他食草动物的情况却缺乏了解。在无盾目动物和头盾目动物物种中观察到的高浓度次生代谢产物表明,这些毒素可能会通过海洋食物链进行生物累积。