Suppr超能文献

丘脑中继与皮质功能

Thalamic relays and cortical functioning.

作者信息

Sherman S Murray

机构信息

Department of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL 60637, USA.

出版信息

Prog Brain Res. 2005;149:107-26. doi: 10.1016/S0079-6123(05)49009-3.

Abstract

Studies on the visual thalamic relays, the lateral geniculate nucleus and pulvinar, provide three key properties that have dramatically changed the view that the thalamus serves as a simple relay to get information from subcortical sites to cortex. First, the retinal input, although a small minority (7%) in terms of numbers of synapses onto geniculate relay cells, dominates receptive field properties of these relay cells and strongly drives them; 93% of input thus is nonretinal and modulates the relay in dynamic and important ways related to behavioral state, including attention. We call the retinal input the driver input and the nonretinal, modulator input, and their unique morphological and functional differences allow us to recognize driver and modulator input to many other thalamic relays. Second, much of the modulation is related to control of a voltage-gated, low threshold Ca(2+) conductance that determines response properties of relay cells -burst or tonic - and this, among other things, affects the salience of information relayed. Third, the lateral geniculate nucleus and pulvinar (a massive but generally mysterious and ignored thalamic relay), are examples of two different types of relay: the LGN is a first order relay, transmitting information from a subcortical driver source (retina), while the pulvinar is mostly a higher order relay, transmitting information from a driver source emanating from layer 5 of one cortical area to another area. Higher order relays seem especially important to general corticocortical communication, and this view challenges the conventional dogma that such communication is based on direct corticocortical connections. In this sense, any new information reaching a cortical area, whether from a subcortical source or another cortical area, benefits from a thalamic relay. Other examples of first and higher order relays also exist, and generally higher order relays represent the majority of thalamus. A final property of interest emphasized in chapter 17 by Guillery (2005) is that most or all driver inputs to thalamus, whether from a subcortical source or from layer 5 of cortex, are axons that branch, with the extrathalamic branch innervating a motor or premotor region in the brainstem, or in some cases, spinal cord. This suggests that actual information relayed by thalamus to cortex is actually a copy of motor instructions (Guillery, 2005). Overall, these features of thalamic relays indicate that the thalamus not only provides a behaviorally relevant, dynamic control over the nature of information relayed, it also plays a key role in basic corticocortical communication.

摘要

对视丘脑中继结构——外侧膝状体核和丘脑枕的研究,揭示了三个关键特性,这些特性极大地改变了人们以往认为丘脑仅仅是一个将信息从皮层下位点传递至皮层的简单中继站的观点。首先,视网膜输入尽管在膝状体中继细胞的突触数量中占比很小(7%),却主导着这些中继细胞的感受野特性并强烈驱动它们;因此,93%的输入是非视网膜性的,并且以与行为状态(包括注意力)相关的动态且重要的方式调节中继过程。我们将视网膜输入称为驱动输入,非视网膜输入称为调制输入,它们独特的形态和功能差异使我们能够识别许多其他丘脑中继结构的驱动输入和调制输入。其次,大部分调制与一种电压门控的低阈值Ca(2+)电导的控制有关,这种电导决定了中继细胞的反应特性——爆发式或紧张性——而且,除此之外,还影响所传递信息的显著性。第三,外侧膝状体核和丘脑枕(一个庞大但通常神秘且被忽视的丘脑中继结构)是两种不同类型中继的例子:外侧膝状体核是一级中继,从皮层下驱动源(视网膜)传递信息,而丘脑枕大多是高级中继,从一个皮层区域的第5层发出的驱动源向另一个区域传递信息。高级中继对于一般的皮层间通信似乎尤为重要,这种观点挑战了传统观念,即这种通信是基于直接的皮层间连接。从这个意义上说,任何到达皮层区域的新信息,无论是来自皮层下源还是另一个皮层区域,都受益于丘脑中继。一级和高级中继的其他例子也存在,并且一般来说高级中继占丘脑的大多数。Guillery(2005年)在第17章中强调的最后一个有趣特性是,大多数或所有进入丘脑的驱动输入,无论是来自皮层下源还是皮层的第5层,都是分支轴突,其丘脑外分支支配脑干中的运动或运动前区,在某些情况下还支配脊髓。这表明丘脑实际传递至皮层的信息实际上是运动指令的副本(Guillery,2005年)。总体而言,丘脑中继的这些特征表明,丘脑不仅对所传递信息性质提供与行为相关的动态控制,还在基本的皮层间通信中起关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验