Suppr超能文献

膜蛋白相互作用的一个主要决定因素定位于小鼠冠状病毒核衣壳蛋白的羧基末端结构域。

A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein.

作者信息

Hurst Kelley R, Kuo Lili, Koetzner Cheri A, Ye Rong, Hsue Bilan, Masters Paul S

机构信息

David Axelrod Institute, Wadsworth Center, NYSDOH, New Scotland Avenue, P.O. Box 22002, Albany, NY 12201-2002, USA.

出版信息

J Virol. 2005 Nov;79(21):13285-97. doi: 10.1128/JVI.79.21.13285-13297.2005.

Abstract

The two major constituents of coronavirus virions are the membrane (M) and nucleocapsid (N) proteins. The M protein is anchored in the viral envelope by three transmembrane segments flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. The M endodomain interacts with the viral nucleocapsid, which consists of the positive-strand RNA genome helically encapsidated by N protein monomers. In previous work with the coronavirus mouse hepatitis virus (MHV), a highly defective M protein mutant, MDelta2, was constructed. This mutant contained a 2-amino-acid carboxy-terminal truncation of the M protein. Analysis of second-site revertants of MDelta2 revealed mutations in the carboxy-terminal region of the N protein that compensated for the defect in the M protein. To seek further genetic evidence corroborating this interaction, we generated a comprehensive set of clustered charged-to-alanine mutants in the carboxy-terminal domain 3 of N protein. One of these mutants, CCA4, had a highly defective phenotype similar to that of MDelta2. Transfer of the CCA4 mutation into a partially diploid MHV genome showed that CCA4 was a loss-of-function mutation rather than a dominant-negative mutation. Analysis of multiple second-site revertants of CCA4 revealed mutations in both the M protein and the N protein that could compensate for the original lesion in N. These data more precisely define the region of the N protein that interacts with the M protein. Further, we found that fusion of domain 3 of the N protein to the carboxy terminus of a heterologous protein caused it to be incorporated into MHV virions.

摘要

冠状病毒病毒粒子的两个主要成分是膜(M)蛋白和核衣壳(N)蛋白。M蛋白通过三个跨膜区段锚定在病毒包膜中,两侧分别是一个短的氨基末端胞外结构域和一个大的羧基末端胞内结构域。M蛋白的胞内结构域与病毒核衣壳相互作用,病毒核衣壳由正链RNA基因组螺旋状包裹在N蛋白单体中组成。在之前对冠状病毒小鼠肝炎病毒(MHV)的研究中,构建了一个高度缺陷的M蛋白突变体MDelta2。该突变体的M蛋白羧基末端有两个氨基酸的截短。对MDelta2的第二位点回复突变体的分析揭示了N蛋白羧基末端区域的突变,这些突变补偿了M蛋白的缺陷。为了寻求进一步的遗传证据来证实这种相互作用,我们在N蛋白的羧基末端结构域3中生成了一组全面的成簇电荷到丙氨酸突变体。其中一个突变体CCA4具有与MDelta2相似的高度缺陷表型。将CCA4突变转移到部分二倍体MHV基因组中表明,CCA4是一个功能丧失突变而不是显性负突变。对CCA4的多个第二位点回复突变体的分析揭示了M蛋白和N蛋白中的突变,这些突变可以补偿N蛋白中的原始损伤。这些数据更精确地定义了N蛋白中与M蛋白相互作用的区域。此外,我们发现将N蛋白的结构域3融合到异源蛋白的羧基末端会导致其被整合到MHV病毒粒子中。

相似文献

3
Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras.
J Virol. 2016 Apr 14;90(9):4357-4368. doi: 10.1128/JVI.03212-15. Print 2016 May.
4
Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein.
J Virol. 2009 Jul;83(14):7221-34. doi: 10.1128/JVI.00440-09. Epub 2009 May 6.
5
Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells.
J Virol. 2000 Sep;74(17):8127-34. doi: 10.1128/jvi.74.17.8127-8134.2000.
7
Importance of the penultimate positive charge in mouse hepatitis coronavirus A59 membrane protein.
J Virol. 2007 May;81(10):5339-48. doi: 10.1128/JVI.02427-06. Epub 2007 Feb 28.
10
A conserved domain in the coronavirus membrane protein tail is important for virus assembly.
J Virol. 2010 Nov;84(21):11418-28. doi: 10.1128/JVI.01131-10. Epub 2010 Aug 18.

引用本文的文献

1
Definition of the components required for selective packaging of coronavirus genomic RNA.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2513552122. doi: 10.1073/pnas.2513552122. Epub 2025 Aug 21.
2
Variant mutation G215C in SARS-CoV-2 nucleocapsid enhances viral infection via altered genomic encapsidation.
PLoS Biol. 2025 Apr 29;23(4):e3003115. doi: 10.1371/journal.pbio.3003115. eCollection 2025 Apr.
3
SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains.
J Virol. 2024 Nov 19;98(11):e0103624. doi: 10.1128/jvi.01036-24. Epub 2024 Oct 16.
4
N terminus of SARS-CoV-2 nonstructural protein 3 interrupts RNA-driven phase separation of N protein by displacing RNA.
J Biol Chem. 2024 Nov;300(11):107828. doi: 10.1016/j.jbc.2024.107828. Epub 2024 Sep 26.
5
Variant mutation in SARS-CoV-2 nucleocapsid enhances viral infection via altered genomic encapsidation.
bioRxiv. 2024 Mar 11:2024.03.08.584120. doi: 10.1101/2024.03.08.584120.
6
Crystal structure of the membrane (M) protein from a bat betacoronavirus.
PNAS Nexus. 2023 Jan 30;2(2):pgad021. doi: 10.1093/pnasnexus/pgad021. eCollection 2023 Feb.
7
Antiviral drug design based on structural insights into the N-terminal domain and C-terminal domain of the SARS-CoV-2 nucleocapsid protein.
Sci Bull (Beijing). 2022 Nov 30;67(22):2327-2335. doi: 10.1016/j.scib.2022.10.021. Epub 2022 Oct 27.
8
Biophysical Modeling of SARS-CoV-2 Assembly: Genome Condensation and Budding.
Viruses. 2022 Sep 20;14(10):2089. doi: 10.3390/v14102089.
9
Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation.
J Biol Chem. 2022 Nov;298(11):102560. doi: 10.1016/j.jbc.2022.102560. Epub 2022 Oct 4.
10
Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis.
PLoS Pathog. 2022 Jun 21;18(6):e1010627. doi: 10.1371/journal.ppat.1010627. eCollection 2022 Jun.

本文引用的文献

1
Coronavirus reverse genetics by targeted RNA recombination.
Curr Top Microbiol Immunol. 2005;287:133-59. doi: 10.1007/3-540-26765-4_5.
2
SARS coronavirus E protein forms cation-selective ion channels.
Virology. 2004 Dec 5;330(1):322-31. doi: 10.1016/j.virol.2004.09.033.
4
Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system.
FEBS Lett. 2004 Oct 8;576(1-2):174-8. doi: 10.1016/j.febslet.2004.09.009.
7
The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction.
Virology. 2003 Jul 20;312(1):25-34. doi: 10.1016/s0042-6822(03)00175-2.
8
The small envelope protein E is not essential for murine coronavirus replication.
J Virol. 2003 Apr;77(8):4597-608. doi: 10.1128/jvi.77.8.4597-4608.2003.
9
Switching species tropism: an effective way to manipulate the feline coronavirus genome.
J Virol. 2003 Apr;77(8):4528-38. doi: 10.1128/jvi.77.8.4528-4538.2003.
10
Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal.
J Virol. 2003 Mar;77(5):2922-7. doi: 10.1128/jvi.77.5.2922-2927.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验