Suppr超能文献

核心启动子元件的功能特性:下游核心元件由TAF1识别。

Functional characterization of core promoter elements: the downstream core element is recognized by TAF1.

作者信息

Lee Dong-Hoon, Gershenzon Naum, Gupta Malavika, Ioshikhes Ilya P, Reinberg Danny, Lewis Brian A

机构信息

Department of Biochemistry, Robert Woods Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA.

出版信息

Mol Cell Biol. 2005 Nov;25(21):9674-86. doi: 10.1128/MCB.25.21.9674-9686.2005.

Abstract

Downstream elements are a newly appreciated class of core promoter elements of RNA polymerase II-transcribed genes. The downstream core element (DCE) was discovered in the human beta-globin promoter, and its sequence composition is distinct from that of the downstream promoter element (DPE). We show here that the DCE is a bona fide core promoter element present in a large number of promoters and with high incidence in promoters containing a TATA motif. Database analysis indicates that the DCE is found in diverse promoters, supporting its functional relevance in a variety of promoter contexts. The DCE consists of three subelements, and DCE function is recapitulated in a TFIID-dependent manner. Subelement 3 can function independently of the other two and shows a TFIID requirement as well. UV photo-cross-linking results demonstrate that TAF1/TAF(II)250 interacts with the DCE subelement DNA in a sequence-dependent manner. These data show that downstream elements consist of at least two types, those of the DPE class and those of the DCE class; they function via different DNA sequences and interact with different transcription activation factors. Finally, these data argue that TFIID is, in fact, a core promoter recognition complex.

摘要

下游元件是一类新发现的RNA聚合酶II转录基因的核心启动子元件。下游核心元件(DCE)在人类β-珠蛋白启动子中被发现,其序列组成与下游启动子元件(DPE)不同。我们在此表明,DCE是一种真正的核心启动子元件,存在于大量启动子中,且在含有TATA基序的启动子中发生率很高。数据库分析表明,DCE存在于多种启动子中,支持其在多种启动子环境中的功能相关性。DCE由三个亚元件组成,其功能以TFIID依赖的方式得以重现。亚元件3可以独立于其他两个亚元件发挥作用,并且也显示出对TFIID的需求。紫外线光交联结果表明,TAF1/TAF(II)250以序列依赖的方式与DCE亚元件DNA相互作用。这些数据表明,下游元件至少由两种类型组成,即DPE类和DCE类;它们通过不同的DNA序列发挥作用,并与不同的转录激活因子相互作用。最后,这些数据表明TFIID实际上是一种核心启动子识别复合物。

相似文献

1
Functional characterization of core promoter elements: the downstream core element is recognized by TAF1.
Mol Cell Biol. 2005 Nov;25(21):9674-86. doi: 10.1128/MCB.25.21.9674-9686.2005.
3
TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12347-52. doi: 10.1073/pnas.0605499103. Epub 2006 Aug 8.
6
Taspase1 processing alters TFIIA cofactor properties in the regulation of TFIID.
Transcription. 2015;6(2):21-32. doi: 10.1080/21541264.2015.1052178.
9
Sp1 and AP2 regulate but do not constitute TATA-less human TAF(II)55 core promoter activity.
Nucleic Acids Res. 2002 Oct 1;30(19):4145-57. doi: 10.1093/nar/gkf537.

引用本文的文献

1
TAF1 is required for fetal but not adult hematopoiesis in mice.
Dev Cell. 2025 Jul 14. doi: 10.1016/j.devcel.2025.06.027.
2
Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering.
Transcription. 2025 Feb;16(1):67-85. doi: 10.1080/21541264.2025.2453315. Epub 2025 Jan 29.
3
Clinicopathological features and prognostic significance of TAF1L in gastric cancer.
BMC Gastroenterol. 2024 Dec 2;24(1):445. doi: 10.1186/s12876-024-03534-y.
4
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses.
Crit Rev Biochem Mol Biol. 2024 Oct;59(5):267-309. doi: 10.1080/10409238.2024.2408562. Epub 2024 Oct 3.
5
Predicting gene expression state and prioritizing putative enhancers using 5hmC signal.
Genome Biol. 2024 Jun 3;25(1):142. doi: 10.1186/s13059-024-03273-z.
6
On the Role of TATA Boxes and TATA-Binding Protein in .
Plants (Basel). 2023 Feb 22;12(5):1000. doi: 10.3390/plants12051000.
7
Genomic analysis of an aggressive case with metastatic intrahepatic mucinous cholangiocarcinoma.
Clin J Gastroenterol. 2022 Aug;15(4):809-817. doi: 10.1007/s12328-022-01649-x. Epub 2022 Jun 14.
8
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases.
Nat Rev Mol Cell Biol. 2022 Sep;23(9):603-622. doi: 10.1038/s41580-022-00476-9. Epub 2022 May 3.
9
Genome-Wide Prediction of Transcription Start Sites in Conifers.
Int J Mol Sci. 2022 Feb 3;23(3):1735. doi: 10.3390/ijms23031735.
10

本文引用的文献

2
Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites.
Nucleic Acids Res. 2005 Apr 22;33(7):2290-301. doi: 10.1093/nar/gki519. Print 2005.
3
Synergy of human Pol II core promoter elements revealed by statistical sequence analysis.
Bioinformatics. 2005 Apr 15;21(8):1295-300. doi: 10.1093/bioinformatics/bti172. Epub 2004 Nov 30.
4
The MTE, a new core promoter element for transcription by RNA polymerase II.
Genes Dev. 2004 Jul 1;18(13):1606-17. doi: 10.1101/gad.1193404.
5
Complete sequencing and characterization of 21,243 full-length human cDNAs.
Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
6
The Eukaryotic Promoter Database EPD: the impact of in silico primer extension.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D82-5. doi: 10.1093/nar/gkh122.
7
DBTSS, DataBase of Transcriptional Start Sites: progress report 2004.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D78-81. doi: 10.1093/nar/gkh076.
8
Core promoter elements and TAFs contribute to the diversity of transcriptional activation in vertebrates.
Mol Cell Biol. 2003 Oct;23(20):7350-62. doi: 10.1128/MCB.23.20.7350-7362.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验