Wright Kevin J, Marr Michael T, Tjian Robert
Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, CA 94720, USA.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12347-52. doi: 10.1073/pnas.0605499103. Epub 2006 Aug 8.
Activator-dependent recruitment of TFIID initiates formation of the transcriptional preinitiation complex. TFIID binds core promoter DNA elements and directs the assembly of other general transcription factors, leading to binding of RNA polymerase II and activation of RNA synthesis. How TATA box-binding protein (TBP) and the TBP-associated factors (TAFs) are assembled into a functional TFIID complex with promoter recognition and coactivator activities in vivo remains unknown. Here, we use RNAi to knock down specific TFIID subunits in Drosophila tissue culture cells to determine which subunits are most critical for maintaining stability of TFIID in vivo. Contrary to expectations, we find that TAF4 rather than TBP or TAF1 plays the most critical role in maintaining stability of the complex. Our analysis also indicates that TAF5, TAF6, TAF9, and TAF12 play key roles in stability of the complex, whereas TBP, TAF1, TAF2, and TAF11 contribute very little to complex stability. Based on our results, we propose that holo-TFIID comprises a stable core subcomplex containing TAF4, TAF5, TAF6, TAF9, and TAF12 decorated with peripheral subunits TAF1, TAF2, TAF11, and TBP. Our initial functional studies indicate a specific and significant role for TAF1 and TAF4 in mediating transcription from a TATA-less, downstream core promoter element (DPE)-containing promoter, whereas a TATA-containing, DPE-less promoter was far less dependent on these subunits. In contrast to both TAF1 and TAF4, RNAi knockdown of TAF5 had little effect on transcription from either class of promoter. These studies significantly alter previous models for the assembly, structure, and function of TFIID.
依赖激活因子的TFIID募集启动转录前起始复合物的形成。TFIID结合核心启动子DNA元件并指导其他通用转录因子的组装,导致RNA聚合酶II的结合和RNA合成的激活。TATA框结合蛋白(TBP)和TBP相关因子(TAFs)如何在体内组装成具有启动子识别和共激活因子活性的功能性TFIID复合物仍然未知。在这里,我们使用RNA干扰在果蝇组织培养细胞中敲低特定的TFIID亚基,以确定哪些亚基对于维持TFIID在体内的稳定性最为关键。与预期相反,我们发现TAF4而非TBP或TAF1在维持复合物稳定性方面起着最关键的作用。我们的分析还表明,TAF5、TAF6、TAF9和TAF12在复合物稳定性中起关键作用,而TBP、TAF1、TAF2和TAF11对复合物稳定性的贡献很小。基于我们的结果,我们提出全酶TFIID包含一个稳定的核心亚复合物,该亚复合物包含TAF4、TAF5、TAF6、TAF9和TAF12,并由外周亚基TAF1、TAF2、TAF11和TBP修饰。我们最初的功能研究表明,TAF1和TAF4在介导来自不含TATA、含有下游核心启动子元件(DPE)的启动子的转录中具有特定且重要的作用,而含有TATA、不含DPE的启动子对这些亚基的依赖性要小得多。与TAF1和TAF4都不同,RNA干扰敲低TAF5对这两类启动子的转录几乎没有影响。这些研究显著改变了之前关于TFIID组装、结构和功能的模型。