Dayou Fabrice, Hernández Marta I, Campos-Martínez José, Hernández-Lamoneda Ramón
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Unité Mixte de Recherche (UMR) 8112 du Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris-Meudon, 92195 Meudon Cedex, France.
J Chem Phys. 2005 Aug 15;123(7):074311. doi: 10.1063/1.2000253.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.
最近的一篇通讯文章[F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]报道了在O₂与O₂碰撞去除O₂(X³Σg⁻, υ≥26)过程中,由自旋轨道耦合介导的振动-电子(V-E)能量转移的重要性。本工作提供了与O₂(X³Σg⁻, υ>>0)的自弛豫相关的二聚体(O₂)₂电子性质的详细信息,其中纳入了涉及O₂(a¹Δg)和O₂(b¹Σg⁺)态的V-E能量转移。基于高度相关的从头算方法,对与二聚体解离为O₂(X³Σg⁻)+O₂(X³Σg⁻)、O₂(a¹Δg)+O₂(X³Σg⁻)和O₂(b¹Σg⁺)+O₂(X³Σg⁻)的基态单重态和两个低激发三重态相关的势能和自旋轨道耦合表面进行了二维电子结构计算。两个激发三重态的相互作用势沿分子间距离呈现非常相似的特征,而基态单重态则有所不同,自旋交换相互作用使其平衡距离更短、结合能更高。对于所研究的三种相互作用势,振动依赖性在定性上是相似的。基态和第二激发态之间的自旋轨道耦合在O₂+O₂解离极限中已经非零,并在相对短的分子间距离内保持其渐近值,在分子内距离接近孤立双原子平衡时耦合增加。另一方面,两个激发三重态之间的态混合导致基态和第一激发态之间明显的碰撞诱导自旋轨道耦合。根据二聚体电子结构的具体特征(包括一个简单的四电子模型)对结果进行了讨论,并与现有的理论和实验数据进行了比较。这项工作为O₂+O₂碰撞中电子能量转移机制的起源提供了理论见解。